login
A157078
a(n) = 32805000*n^2 - 55096200*n + 23133601.
6
842401, 44161201, 153090001, 327628801, 567777601, 873536401, 1244905201, 1681884001, 2184472801, 2752671601, 3386480401, 4085899201, 4850928001, 5681566801, 6577815601, 7539674401, 8567143201, 9660222001, 10818910801, 12043209601
OFFSET
1,1
COMMENTS
The identity(32805000*n^2 - 55096200*n + 23133601)^2 - (2025*n^2 - 649*n + 52)*(729000*n - 612180)^2 = 1 can be written as a(n)^2 - A156853(n)*A156865(n)^2 = 1.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(842401 + 41633998*x + 23133601*x^2)/(1-x)^3.
E.g.f.: -23133601 + (23133601 - 22291200*x + 32805000*x^2)*exp(x). - G. C. Greubel, Jan 27 2022
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {842401, 44161201, 153090001}, 40]
PROG
(Magma) I:=[842401, 44161201, 153090001]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..30]];
(PARI) a(n)=32805000*n^2-55096200*n+23133601 \\ Charles R Greathouse IV, Dec 23 2011
(Sage) [16200*n*(2025*n - 3401) + 23133601 for n in (1..25)] # G. C. Greubel, Jan 27 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 22 2009
STATUS
approved