login
A157063
Number of integer sequences of length n+1 with sum zero and sum of absolute values 28.
1
2, 84, 1962, 32130, 406800, 4208610, 36881420, 280819260, 1893408750, 11472968760, 63221641758, 319917948246, 1498750896708, 6545498596110, 26808012135000, 103501142484360, 378407481456870, 1315394383751460, 4363052456797550, 13853429338548630
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (29, -406, 3654, -23751, 118755, -475020, 1560780, -4292145, 10015005, -20030010, 34597290, -51895935, 67863915, -77558760, 77558760, -67863915, 51895935, -34597290, 20030010, -10015005, 4292145, -1560780, 475020, -118755, 23751, -3654, 406, -29, 1).
FORMULA
a(n) = T(n,14); T(n,k) = Sum_{i=1..n} binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k).
From G. C. Greubel, Jan 24 2022: (Start)
a(n) = (n+1)*binomial(n+13, 14)*Hypergeometric3F2([-13, -n, 1-n], [2, -n-13], 1).
a(n) = (40116600/28!)*n*(n+1)*(542861032610856960000 + 1222285449585328128000*n + 1949147924290921267200*n^2 + 1623917017366475120640*n^3 + 1256475121883342659584*n^4 + 587860847016245577216*n^5 + 290144191606881266304*n^6 + 87769963981312971072*n^7 + 31017509312522326880*n^8 + 6493644952485577744*n^9 + 1754084550497496360*n^10 + 263474544214276252*n^11 + 56764614862429890*n^12 + 6225163072052509*n^13 + 1102423601827845*n^14 + 88588233707662*n^15 + 13189509162960*n^16 + 769151138899*n^17 + 97984044015*n^18 + 4039324432*n^19 + 446558970*n^20 + 12345619*n^21 + 1198275*n^22 + 19942*n^23 + 1716*n^24 + 13*n^25 + n^26).
G.f.: 2*x*(1 + 13*x + 169*x^2 + 1014*x^3 + 6084*x^4 + 22308*x^5 + 81796*x^6 + 204490*x^7 + 511225*x^8 + 920205*x^9 + 1656369*x^10 + 2208492*x^11 + 2944656*x^12 + 2944656*x^13 + 2944656*x^14 + 2208492*x^15 + 1656369*x^16 + 920205*x^17 + 511225*x^18 + 204490*x^19 + 81796*x^20 + 22308*x^21 + 6084*x^22 + 1014*x^23 + 169*x^24 + 13*x^25 + x^26)/(1-x)^29. (End)
MATHEMATICA
A103881[n_, k_]:= (n+1)*Binomial[n+k-1, k]*HypergeometricPFQ[{1-n, -n, 1-k}, {2, 1-n - k}, 1];
A157063[n_]:= A103881[n, 14];
Table[A157063[n], {n, 50}] (* G. C. Greubel, Jan 24 2022 *)
PROG
(Sage)
def A103881(n, k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) )
def A157063(n): return A103881(n, 14)
[A157063(n) for n in (1..50)] # G. C. Greubel, Jan 24 2022
CROSSREFS
Sequence in context: A215263 A265591 A348265 * A372716 A288312 A289198
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 22 2009
STATUS
approved