OFFSET
1,13
COMMENTS
Also equals the number of partitions of n-1 into exactly k-1 parts, each <= k+1; equality reported by Franklin T. Adams-Watters.
Comment from N. J. A. Sloane: This is a special case of the fact that the number of partitions of a-c into exactly b-1 parts none exceeding c equals the number of partitions of a-b into exactly c-1 parts none exceeding b. See Andrews reference.
REFERENCES
George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976 (Theorem 1.5).
EXAMPLE
Table begins:
1
0,1
0,1,1
0,1,1,1
0,0,2,1,1
0,0,2,2,1,1
0,0,2,3,2,1,1
0,0,1,4,3,2,1,1
0,0,1,4,5,3,2,1,1
0,0,0,5,6,5,3,2,1,1
0,0,0,4,8,7,5,3,2,1,1
0,0,0,4,9,10,7,5,3,2,1,1
0,0,0,3,11,12,11,7,5,3,2,1,1
0,0,0,2,11,16,14,11,7,5,3,2,1,1
0,0,0,1,12,19,19,15,11,7,5,3,2,1,1
0,0,0,1,11,23,24,21,15,11,7,5,3,2,1,1
0,0,0,0,11,25,31,27,22,15,11,7,5,3,2,1,1
0,0,0,0,9,29,37,36,29,22,15,11,7,5,3,2,1,1
0,0,0,0,8,30,46,45,39,30,22,15,11,7,5,3,2,1,1
0,0,0,0,6,32,52,58,50,41,30,22,15,11,7,5,3,2,1,1
0,0,0,0,5,32,61,70,66,53,42,30,22,15,11,7,5,3,2,1,1
0,0,0,0,3,32,68,86,82,71,55,42,30,22,15,11,7,5,3,2,1,1
0,0,0,0,2,30,76,101,104,90,74,56,42,30,22,15,11,7,5,3,2,1,1
0,0,0,0,1,29,81,120,127,116,95,76,56,42,30,22,15,11,7,5,3,2,1,1
a(8,4)=4 since {2,2,2,2}, {3,2,2,1}, {3,3,1,1}, {4,2,1,1} are the partitions of 8 in exactly 4 parts <=4.
MATHEMATICA
Table[T[n-1, k-1, k+1]-T[n-1, k-2, k+1], {n, 20}, {k, n}] with T[n, a, b] as defined in A047993.
<<DiscreteMath`Combinatorica`
partitionexact[ n_, m_ ]:=TransposePartition/@(Prepend[ #, m ]&/@Partitions[ n-m, m ] )
Table[Length@Select[partitionexact[n, k], Max[ # ]<=k&], {n, 1, 24}, {k, n}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Feb 22 2009
STATUS
approved