|
|
A157016
|
|
Number of graphs with n vertices such that a bipartite connected component doesn't exist.
|
|
3
|
|
|
1, 0, 0, 1, 3, 16, 96, 812, 10957, 260494, 11713772, 1006689871, 164059928509, 50335918374222, 29003488479015273, 31397381309486933777, 63969560164056545231089, 245871831711240782887877980, 1787331725280384281389706209909, 24636021429463931875328533035140871, 645465483198968863672173418327800803328
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..50
|
|
FORMULA
|
Euler transform of A157051. - Max Alekseyev, Feb 22 2009
A157015(n) + a(n) = A000088(n).
|
|
MATHEMATICA
|
cbs[g_] := Or @@ Map[BipartiteQ, Map[InduceSubgraph[g, # ] &, ConnectedComponents[g]]] Table[Count[Map[cbs, ListGraphs[n]], False], {n, 6}]
Table[Count[Map[cbs, ListGraphs[n]], False], {n, 7}] (* Wouter Meeussen, Feb 21 2009 *)
|
|
CROSSREFS
|
Cf. A000088, A157015, A157051.
Sequence in context: A000270 A157051 A000271 * A228792 A295810 A233203
Adjacent sequences: A157013 A157014 A157015 * A157017 A157018 A157019
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Tanya Khovanova, Feb 21 2009
|
|
EXTENSIONS
|
a(7) from Wouter Meeussen, Feb 21 2009
Formula and terms a(8)-a(17) from Max Alekseyev, Feb 22 2009
Corrected by Max Alekseyev and Vladeta Jovovic, May 02 2009
a(18)-a(20) from Max Alekseyev, Jun 24 2013
|
|
STATUS
|
approved
|
|
|
|