login
Triangle T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2, read by rows.
5

%I #14 Sep 08 2022 08:45:41

%S 2,1,2,2,4,2,6,12,9,2,24,48,40,16,2,120,240,210,100,25,2,720,1440,

%T 1296,672,210,36,2,5040,10080,9240,5040,1764,392,49,2,40320,80640,

%U 74880,42240,15840,4032,672,64,2,362880,725760,680400,393120,154440,42768

%N Triangle T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2, read by rows.

%C For n>=1, o.g.f. of n-th row is a polynomial p(x,n) = Sum_{k=0..n} ( 2*n*(n-k)! * binomial(2*n-k, k)/(2*n-k)) * x^k. These polynomials are hit polynomials for the reduced ménage problem (Riordan 1958).

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 197-199

%H G. C. Greubel, <a href="/A156995/b156995.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k) = 2*n*binomial(2*n-k, k)*(n-k)!/(2*n-k), with T(0, 0) = 2.

%e Triangle starts with:

%e n=0: 2;

%e n=1: 1, 2;

%e n=2: 2, 4, 2;

%e n=3: 6, 12, 9, 2;

%e n=4: 24, 48, 40, 16, 2;

%e n=5: 120, 240, 210, 100, 25, 2;

%e n=6: 720, 1440, 1296, 672, 210, 36, 2;

%e n=7: 5040, 10080, 9240, 5040, 1764, 392, 49, 2;

%e n=8: 40320, 80640, 74880, 42240, 15840, 4032, 672, 64, 2;

%e ...

%t T[n_, k_]:= If[n==0, 2, 2*n*Binomial[2*n-k, k]*(n-k)!/(2*n-k)];

%t Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, May 14 2021 *)

%o (Magma)

%o A156995:= func< n,k | n eq 0 select 2 else 2*n*Factorial(n-k)*Binomial(2*n-k, k)/(2*n-k) >;

%o [A156995(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 14 2021

%o (Sage)

%o def A156995(n,k): return 2 if (k==n) else 2*n*factorial(n-k)*binomial(2*n-k,k)/(2*n-k)

%o flatten([[A156995(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 14 2021

%Y Row sums are A300484.

%K nonn,tabl

%O 0,1

%A _Roger L. Bagula_, Feb 20 2009

%E Edited and changed T(0,0) = 2 (to make formula continuous and constant along the diagonal k = n) by _Max Alekseyev_, Mar 06 2018