login
A156982
Numbers k such that 2^k + 29 is prime.
7
1, 3, 5, 7, 9, 13, 15, 17, 23, 27, 33, 37, 43, 63, 69, 73, 79, 89, 117, 127, 239, 395, 409, 465, 837, 2543, 10465, 10837, 17005, 19285, 24749, 26473, 29879, 49197, 56673, 67119, 67689, 71007, 109393, 156403, 158757, 181913, 190945, 207865, 222943, 419637
OFFSET
1,2
COMMENTS
n cannot be of the form 4m+2 or 4m because 2^(2m+2) + 29 is divisible by 3 and 2^4m + 29 is divisible by 15. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Feb 21 2009
a(47) > 5*10^5. - Robert Price, Oct 25 2015
LINKS
EXAMPLE
For k = 1, 2^1 + 29 = 31.
For k = 3, 2^3 + 29 = 37.
MATHEMATICA
Delete[Union[Table[If[PrimeQ[2^n + 29], n, 0], {n, 1, 2600}]], 1]
Select[Range[500000], PrimeQ[2^#+29]&] (* Robert Price, Oct 04 2015 *)
PROG
(Magma) [n: n in [0..1000] | IsPrime(2^n+29)]; // Vincenzo Librandi, Oct 05 2015
(PARI) is(n)=ispseudoprime(2^n+29) \\ Charles R Greathouse IV, Jun 06 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 20 2009
EXTENSIONS
a(27)-a(38) from Robert Price, Oct 04 2015
a(39)-a(46) discovered by Henri Lifchitz from Lifchitz link by Robert Price, Oct 04 2015
STATUS
approved