OFFSET
1,1
COMMENTS
There are exactly 87 such numbers, none of them being prime.
Since 0 + 1 +...+ 9 = 5*9, every pandigital number is divisible by 9, hence every term of this sequence is divisible by 3 and so cannot be a prime. - Giovanni Resta, Mar 19 2013 [Comment expanded by N. J. A. Sloane, Jan 15 2022]
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..87 (full sequence)
S. C. Gould, Question 15734, The Educational Times, and Journal of the College of Preceptors 58 (1905), nr. 527 (March 1), p. 157; Solution 15734, Ibid., nr. 529 (May 1), p. 235.
FORMULA
a(n) = sqrt(A036745(n)).
MAPLE
lim:=floor(sqrt(9876543210)): for n from floor(sqrt(1023456789)) to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ", n): fi: od: # Nathaniel Johnston, Jun 22 2011
MATHEMATICA
Select[Range[Floor@Sqrt@1023456789, Ceiling@Sqrt@9876543210], Sort@IntegerDigits[#^2] == Range[0, 9] &] (* Giovanni Resta, Mar 19 2013 *)
Select[Range[31992, 99381, 3], Union[DigitCount[#^2]]=={1}&] (* Harvey P. Dale, Jan 17 2022 *)
PROG
(Magma) [n: n in [Floor(Sqrt(1023456789))..Ceiling(Sqrt(9876543210))] | Set(Intseq(n^2)) eq {0..9}]; // Bruno Berselli, Mar 19 2013 (after Giovanni Resta)
CROSSREFS
KEYWORD
fini,full,nonn,base
AUTHOR
Zak Seidov, Feb 20 2009
STATUS
approved