login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156925 FP2 polynomials related to the generating functions of the left hand columns of the A156920 triangle. 19
1, 1, 1, 1, 8, -11, -6, 1, 38, -108, -242, 839, -444, -180, 1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240, 1, 487, 720, -130472, 1277794, -4193514, -6504496 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The FP2 polynomials appear in the numerators of the GF2 o.g.f.s. of the left hand columns of A156920. The FP2 can be calculated with the formula of the LHC sequence, see A156920, and the formula for the general structure of the generating function GF2, see below.

An appropriate name for the FP2 polynomials seems to be the flower polynomials of the second kind because the zero patterns of these polynomials look like flowers. The zero patterns of the FP2 and the FP1, see A156921, resemble each other closely.

A Maple program that generates for a left hand column with a certain LHCnr its GF2 and FP2 can be found below. LHCnr stands for left hand column number and starts from 1.

LINKS

Table of n, a(n) for n=0..31.

FORMULA

G.f.: GF2(z;LHCnr)=FP2(z; LHCnr)/product((1-m*z)^( LHCnr -m+1),m=1.. LHCnr)

Row sum(n+1) = (-1)^(n)*2*(n+1)!*Row sum(n); Row sum(n=0) = 1.

EXAMPLE

The first few rows of the "triangle" of the coefficients of the FP2 polynomials.

In the columns the coefficients of the powers of z^m, m=0,1,2,... , appear.

[1]

[1, 1]

[1, 8, -11, -6]

[1, 38, -108, -242, 839, -444, -180]

[1, 144, -425, -7382, 48451, -96764, -2559, 257002, -312444, 88344, 30240]

Matrix of the coefficients of the FP2 polynomials. The coefficients in the columns of this matrix are the powers of z^m, m=0,1,2,.. .

[1, 0, 0, 0, 0, 0, 0]

[1, 1, 0, 0, 0, 0, 0]

[1, 8 , -11, -6, 0, 0, 0]

[1, 38, -108, -242, 839, -444, -180]

The first few FP2 polynomials are:

FP2(z; LHCnr = 1) = 1

FP2(z; LHCnr = 2) = (1+z)

FP2(z; LHCnr = 3) = 1+8*z-11*z^2-6*z^3

Some GF2(z;LHCnr) are:

GF2(z ;LHCnr = 3) = (1+8*z-11*z^2-6*z^3)/((1-z)^3*(1-2*z)^2*(1-3*z))

GF2(z; LHCnr = 4) = (1+38*z-108*z^2-242*z^3+839*z^4-444*z^5-180*z^6)/((1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z))

MAPLE

LHCnr:=5; LHCmax:=(LHCnr)*(LHCnr-1)/2: RHCend:=LHCnr+LHCmax: for k from LHCnr to RHCend do for n from 0 to k do S2[k, n]:=sum((-1)^(n+i)*binomial(n, i)*i^k/n!, i=0..n) end do: G(k, x):= sum(S2[k, p]*((2*p)!/p!)*x^p/(1-4*x)^(p+1), p=0..k)/ (((-1)^(k+1)*2*x)/(-1+4*x)^(k+1)): fx:=simplify(G(k, x)): nmax:=degree(fx); for n from 0 to nmax do d[n]:= coeff(fx, x, n)/2^n end do: LHC[n]:=d[LHCnr-1] end do: a:=n-> LHC[n]: seq(a(n), n=LHCnr..RHCend); for nx from 0 to LHCmax do num:=sort(sum(A[t]*z^t, t=0..LHCmax)): nom:=product((1-u*z)^(LHCnr-u+1), u=1..LHCnr); LHCb:=series(num/nom, z, nx+1); y:=coeff(LHCb, z, nx)-A[nx]; x:=LHC[LHCnr+nx]; A[nx]:=x-y; end do: FP2[LHCnr]:=sort(num, z, ascending); GenFun[LHCnr]:= FP2[LHCnr]/ product((1-m*z)^(LHCnr-m+1), m=1..LHCnr);

CROSSREFS

Cf. A156920, A156921, A156927, A156933.

For the first few GF2's see A050488, A142965, A142966 and A142968.

Row sums(n) = A156926(n).

The number of FP2 terms follow the 'Lazy Caterer's sequence' A000124.

For the polynomials in the denominators of the GF2(z;LHCnr) see A157703.

Sequence in context: A070478 A109596 A164801 * A077060 A123939 A134787

Adjacent sequences:  A156922 A156923 A156924 * A156926 A156927 A156928

KEYWORD

easy,sign,tabf

AUTHOR

Johannes W. Meijer, Feb 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 21 20:57 EDT 2017. Contains 289648 sequences.