This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156904 G.f. A(x) satisfies: A(x) = 1 + x*Sum_{n>=0} log( A(3^n*x) )^n / n!. 1
 1, 1, 3, 63, 6732, 3414312, 10221878106, 243813944182248, 50538758405328815616, 87376772859536771916909012, 1235009698863206337006094872463887, 142641072494398006081741872595533545306244 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f. A(x) satisfies: a(n+1) = [x^n] A(x)^(3^n) for n>=0, with a(0)=1. EXAMPLE G.f.: A(x) = 1 + x + 3*x^2 + 63*x^3 + 6732*x^4 + 3414312*x^5 +... SERIES REPRESENTATION: A(x) = 1 + x*[1 + log(A(3x)) + log(A(9x))^2/2! + log(A(27x))^3/3! +...+ log(A(3^n*x))^n/n! +...]. ... GENERATED BY POWERS OF G.F.: a(n+1) equals the coefficient of x^n in A(x)^(3^n) for n>=0; the coefficients of A(x)^(3^n) begin: A^(3^0): [(1), 1, 3, 63, 6732, 3414312, 10221878106, ...]; A^(3^1): [1, (3), 12, 208, 20610, 10284678, 30686274630, ...]; A^(3^2): [1, 9, (63), 867, 66330, 31246902, 92246164932, ...]; A^(3^3): [1, 27, 432, (6732), 273024, 97968096, 278472473082, ...]; A^(3^4): [1, 81, 3483, 109863, (3414312), 385422948, 853280745822, ...]; A^(3^5): [1, 243, 30132, 2553768, 168586110, (10221878106), ...]; In the above table, the diagonal forms this sequence shift left. PROG (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, Vec(Ser(A)^(3^(#A-1)))[ #A])); A[n+1]} CROSSREFS Cf. A132695, A156905. Sequence in context: A123687 A159605 A180761 * A193100 A053857 A175985 Adjacent sequences:  A156901 A156902 A156903 * A156905 A156906 A156907 KEYWORD nonn AUTHOR Paul D. Hanna, Mar 04 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 17:17 EDT 2019. Contains 323444 sequences. (Running on oeis4.)