Notes on for A156894

Peter Bala, March 2020

We show that the supercongruence $\operatorname{A156894}(p) \equiv \operatorname{A156894}(1)\left(\bmod p^{3}\right)$ holds for all prime $p \geq 5$.

The terms of A156894 are defined by means of the binomial sum

$$
\begin{equation*}
a(n)=\sum_{k=0}^{n}\binom{n}{k}\binom{2 n+k-1}{k} \tag{1}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
a(n)=\left[x^{n}\right]\left(\frac{1+x}{(1-x)^{2}}\right)^{n} \tag{2}
\end{equation*}
$$

Supercongruences. Given an integer sequence $s(n)$, there exists a unique formal power series $G(x)=1+g_{1} x+g_{2} x^{2}+\cdots$, with rational coefficients, such that

$$
\begin{equation*}
s(n)=\left[x^{n}\right] G(x)^{n} \quad \text { for } n \geq 1 \tag{3}
\end{equation*}
$$

$G(x)$ is given by

$$
\begin{equation*}
G(x)=\frac{x}{\operatorname{Rev}(x E(x))} \tag{4}
\end{equation*}
$$

where Rev denotes the series reversion (inversion) operator, and the power series $E(x)=\exp \left(\sum_{n \geq 1} s(n) \frac{x^{n}}{n}\right)$. See [Stan'99, Exercise 5.56 (a), p. 98, and its solution on p. 146] or [Bal'15].

We can invert (4) to express $E(x)$ in terms of $G(x)$:

$$
\begin{equation*}
E(x)=\frac{1}{x} \operatorname{Rev}\left(\frac{x}{G(x)}\right) . \tag{5}
\end{equation*}
$$

One simple consequence of (4) and (5) is the following:
the power series $G(x)$ is integral \Longleftrightarrow the power series $E(x)$ is integral.

For an integer sequence $s(n)$, the condition that the power series $E(x)=$ $\exp \left(\sum_{n \geq 1} s(n) \frac{x^{n}}{n}\right)$ is integral is known to be equivalent to the statement that the Gauss congruences

$$
s\left(m p^{k}\right) \equiv s\left(m p^{k-1}\right)\left(\bmod p^{k}\right)
$$

hold for all prime p and positive integers m, k [Stan'99, Ex. 5.2 (a), p. 72, and its solution on p. 104].

It therefore follows from (2) and the above remarks that the sequence $a(n)=\mathrm{A} 156894(n)$ satisfies the Gauss congruences. In fact, calculation suggests that A156894 satisfies the stronger supercongruences

$$
\begin{equation*}
a\left(m p^{k}\right) \equiv a\left(m p^{k-1}\right)\left(\bmod p^{3 k}\right) \tag{6}
\end{equation*}
$$

for prime $p \geq 5$ and all positive integers m and k. We prove a particular case.
Proposition 1. The supercongruence $a(p) \equiv 3\left(\bmod p^{3}\right)$ holds for prime $p \geq 5$.

Proof. Let $p \geq 5$ be prime. We make use of the binomial sum representation (1) for $a(p)$. We rewrite the sum by separating out the first $(k=0)$ summand and last $(k=p)$ summand and adding together the k-th and $(p-k)$-th summands for $1 \leq k \leq \frac{p-1}{2}$ to obtain

$$
a(p)=1+\binom{3 p-1}{p}+\sum_{k=1}^{\frac{p-1}{2}}\binom{p}{k}\left(\binom{2 p+k-1}{k}+\binom{3 p-k-1}{p-k}\right)
$$

Now by [Mes'11, equation 35]

$$
\binom{3 p-1}{p}=\frac{2}{3}\binom{3 p}{p} \equiv 2\left(\bmod p^{3}\right) \quad \text { for prime } p \geq 5
$$

Hence
$a(p) \equiv 3+\sum_{k=1}^{\frac{p-1}{2}}\binom{p}{k}\left(\binom{2 p+k-1}{k}+\binom{3 p-k-1}{p-k}\right)\left(\bmod p^{3}\right), \quad$ prime $p \geq 5$.
To establish the Proposition we will show that each summand on the right side of (7) is divisible by p^{3}. Clearly, the first factor $\binom{p}{k}$ in each summand is divisible by p for k in the range of summation. Therefore, to prove the Proposition, it is enough to show that the second factor $\binom{2 p+k-1}{k}+\binom{3 p-k-1}{p-k}$ is divisible by p^{2} for all values of k in the range of summation. To show this, we write the second factor as a product of two terms, each of which is divisible by p.

One easily checks that

$$
\begin{equation*}
\binom{2 p+k-1}{k}+\binom{3 p-k-1}{p-k}=\frac{(2 p+k-1)!}{(p-k)!(2 p-1)!}\left\{\frac{(3 p-k-1)!}{(2 p+k-1)!}+\frac{(p-k)!}{k!}\right\} \tag{8}
\end{equation*}
$$

The first factor on the right side of (7) is a rational number divisible by p for k in the range $1 \ldots \frac{p-1}{2}$, since its numerator is exactly divisible by p^{2} and its denominator is exactly divisible by p. To show that the second factor on the right side of (8) is also divisible by p we first set $r=p-2 k \geq 1$ and $s=p-2 k-1 \geq 0$. Then we have

$$
\begin{aligned}
\frac{(3 p-k-1)!}{(2 p+k-1)!}+\frac{(p-k)!}{k!} & =(3 p-k-1) \cdots(3 p-k-r)+(p-k) \cdots(p-k-s) \\
& \equiv(-1)^{r}(k+1) \cdots(k+r)+(-1)^{s+1} k \cdots(k+s)(\bmod p) \\
& \equiv 0(\bmod p)
\end{aligned}
$$

since $r=s+1$ and $k+r \equiv-k(\bmod p)$.
We have shown that $\binom{2 p+k-1}{k}+\binom{3 p-k-1}{p-k}$ is divisible by p^{2} for $1 \leq k \leq \frac{p-1}{2}$, thus completing the proof of the Proposition.

A generalisation. We define a 3-parameter family of sequences $a_{(r, i, j)}(n)$ by

$$
\begin{equation*}
a_{(r, i, j)}(n)=\left[x^{r n}\right]\left(\frac{(1+x)^{i}}{(1-x)^{j}}\right)^{n} \quad r \in \mathbb{N}, i, j \in \mathbb{Z} \tag{9}
\end{equation*}
$$

So by $(2), a_{(1,1,2)}(n)=\mathrm{A} 156894(n)$. Other sequences of this type already in the OEIS include $a_{(1,1,1)}(n)=\operatorname{A002003(n)}, a_{(2,1,1)}(n)=A 103885(\mathrm{n})$ and $a_{(1,2,1)}(n)=A 119259(\mathrm{n})$. We conjecture that the supercongruences

$$
\begin{equation*}
a_{(r, i, j)}\left(n p^{k}\right) \equiv a_{(r, i, j)}\left(n p^{k-1}\right)\left(\bmod p^{3 k}\right) \tag{10}
\end{equation*}
$$

hold for prime $p \geq 5$ and all $r, n, k \in \mathbb{N}$ and $i, j \in \mathbb{Z}$.

References

[Bal'15] P. Bala, Representing a sequence as $[x \hat{\{ }\{\mathrm{n}] \mathrm{G}(\mathrm{x}) \hat{\{ }\} \mathrm{n}$, uploaded to A066398
[Mes'11] R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
[Stan'99] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999

