login
A156842
529n^2 - 746n + 263.
4
46, 887, 2786, 5743, 9758, 14831, 20962, 28151, 36398, 45703, 56066, 67487, 79966, 93503, 108098, 123751, 140462, 158231, 177058, 196943, 217886, 239887, 262946, 287063, 312238, 338471, 365762, 394111, 423518, 453983, 485506, 518087
OFFSET
1,1
COMMENTS
The identity (279841*n^2-394634*n+139128)^2-(529*n^2-746*n+263)*(12167*n-8579)^2=1 can be written as A156844(n)^2-a(n)*A156845(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-46-749*x-263*x^2)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {46, 887, 2786}, 40]
Table[529n^2-746n+263, {n, 40}] (* Harvey P. Dale, Jun 07 2023 *)
PROG
(Magma) I:=[46, 887, 2786]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n)=529*n^2-746*n+263 \\ Charles R Greathouse IV, Dec 23 2011
CROSSREFS
Cf. AA156844, A156845, A156849.
Sequence in context: A066405 A113922 A160067 * A078427 A002138 A205495
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 17 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Jul 25 2010
STATUS
approved