login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156832 a(n) = the largest divisor of n! such that (sum{k=1 to n} a(k)) is a divisor of n!. 3
1, 1, 1, 3, 24, 90, 720, 2520, 10080, 120960, 604800, 5913600, 79833600, 691891200, 15567552000, 65383718400, 1307674368000, 11115232128000, 66691392768000, 1187940433680000, 79829597143296000, 3568256278659072000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Is this sequence finite; or is there always a divisor of n! where the sum of the first n terms of the sequence divides n!, for every positive integer n?

LINKS

R. G. Wilson v, Table of n, a(n) for n = 1..250

EXAMPLE

For n = 5 we check the divisors of 5!=120, from the largest downward: a(1)+a(2)+a(3)+a(4) + 120 = 126, which is not a divisor of 120. 1+1+1+3 + 60 = 66, which is not a divisor of 120. 1+1+1+3 + 40 = 46, which is not a divisor of 120. 1+1+1+3 + 30 = 36, which is not a divisor of 120. But 1+1+1+3 + 24 = 30, which is a divisor of 120. So a(5) = 24 = the largest divisor of 5! such that a(1)+a(2)+a(3)+a(4)+a(5) also divides 5!.

MAPLE

A156832 := proc(n) local dvs, i, largd ; option remember; if n = 1 then 1; else dvs := sort(convert(numtheory[divisors](n!), list)) ; for i from 1 to nops(dvs) do largd := op(-i, dvs) ; if largd+add( procname(i), i=1..n-1) in dvs then RETURN(largd) ; fi; od: error(n) ; fi; end: for n from 1 do printf("%d, \n", A156832(n)) ; od; # R. J. Mathar, Feb 20 2009

MATHEMATICA

f[n_] := f[n] = Block[{d = 1, s = Sum[ f@i, {i, n - 1}]}, While[ Mod[n!, d] > 0 || Mod[n!, n!/d + s] > 0, d++ ]; n!/d]; Array[f, 23] (* Robert G. Wilson v, Feb 16 2009 *)

CROSSREFS

For n!/a(n) see A145500.

Cf. A145499.

Sequence in context: A276243 A211618 A274954 * A092780 A004282 A216725

Adjacent sequences:  A156829 A156830 A156831 * A156833 A156834 A156835

KEYWORD

nonn

AUTHOR

Leroy Quet, Feb 16 2009

EXTENSIONS

More terms from Robert G. Wilson v, Joshua Zucker and R. J. Mathar, Feb 16 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 09:49 EDT 2017. Contains 288813 sequences.