The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156832 a(n) = the largest divisor of n! such that (sum{k=1 to n} a(k)) is a divisor of n!. 3
 1, 1, 1, 3, 24, 90, 720, 2520, 10080, 120960, 604800, 5913600, 79833600, 691891200, 15567552000, 65383718400, 1307674368000, 11115232128000, 66691392768000, 1187940433680000, 79829597143296000, 3568256278659072000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Is this sequence finite; or is there always a divisor of n! where the sum of the first n terms of the sequence divides n!, for every positive integer n? LINKS R. G. Wilson v, Table of n, a(n) for n = 1..250 EXAMPLE For n = 5 we check the divisors of 5!=120, from the largest downward: a(1)+a(2)+a(3)+a(4) + 120 = 126, which is not a divisor of 120. 1+1+1+3 + 60 = 66, which is not a divisor of 120. 1+1+1+3 + 40 = 46, which is not a divisor of 120. 1+1+1+3 + 30 = 36, which is not a divisor of 120. But 1+1+1+3 + 24 = 30, which is a divisor of 120. So a(5) = 24 = the largest divisor of 5! such that a(1)+a(2)+a(3)+a(4)+a(5) also divides 5!. MAPLE A156832 := proc(n) local dvs, i, largd ; option remember; if n = 1 then 1; else dvs := sort(convert(numtheory[divisors](n!), list)) ; for i from 1 to nops(dvs) do largd := op(-i, dvs) ; if largd+add( procname(i), i=1..n-1) in dvs then RETURN(largd) ; fi; od: error(n) ; fi; end: for n from 1 do printf("%d, \n", A156832(n)) ; od; # R. J. Mathar, Feb 20 2009 MATHEMATICA f[n_] := f[n] = Block[{d = 1, s = Sum[ f@i, {i, n - 1}]}, While[ Mod[n!, d] > 0 || Mod[n!, n!/d + s] > 0, d++ ]; n!/d]; Array[f, 23] (* Robert G. Wilson v, Feb 16 2009 *) CROSSREFS For n!/a(n) see A145500. Cf. A145499. Sequence in context: A276243 A211618 A274954 * A092780 A004282 A216725 Adjacent sequences:  A156829 A156830 A156831 * A156833 A156834 A156835 KEYWORD nonn AUTHOR Leroy Quet, Feb 16 2009 EXTENSIONS More terms from Robert G. Wilson v, Joshua Zucker and R. J. Mathar, Feb 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 31 19:00 EDT 2020. Contains 338111 sequences. (Running on oeis4.)