login
A156813
a(n) = 225*n^2 - n.
2
224, 898, 2022, 3596, 5620, 8094, 11018, 14392, 18216, 22490, 27214, 32388, 38012, 44086, 50610, 57584, 65008, 72882, 81206, 89980, 99204, 108878, 119002, 129576, 140600, 152074, 163998, 176372, 189196, 202470, 216194, 230368, 244992, 260066
OFFSET
1,1
FORMULA
From Vincenzo Librandi, Feb 08 2012: (Start)
900*a(n) + 1 = (450*n - 1)^2.
G.f.: 2*x*(112 + 113*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: x*(224 + 225*x)*exp(x). - G. C. Greubel, Jun 10 2021
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {224, 898, 2022}, 50] (* Vincenzo Librandi, Feb 08 2012 *)
PROG
(PARI) a(n)=225*n^2-n \\ Charles R Greathouse IV, Dec 23 2011
(Magma) I:=[224, 898, 2022]; [n le 3 select I[n] else 3*Self(n-1) -3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 08 2012
(Sage) [n*(225*n -1) for n in (1..50)] # G. C. Greubel, Jun 10 2021
CROSSREFS
Cf. A156814.
Sequence in context: A094209 A158227 A061524 * A233875 A233869 A146745
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 16 2009
STATUS
approved