

A156807


Number of distinct interlace polynomials Q of graphs of order n.


0



1, 2, 3, 6, 11, 24, 52, 152, 521, 2793, 26178, 515131
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

M. Aigner and H. van der Holst, Interlace polynomials, Linear Algebra Appl., 377 (2004), 1130.


LINKS

Table of n, a(n) for n=1..12.
M. Aigner and H. van der Holst, Interlace polynomials, Linear Algebra Appl., 377 (2004), 1130.
R. Arratia, B. Bollobas, and G. B. Sorkin, The Interlace Polynomial of a Graph, J. Combin. Theory Ser. B, 92 (2004), 199233.
L. E. Danielsen and M. G. Parker, Interlace polynomials: Enumeration, unimodality, and connections to codes, arXiv:0804.2576 [math.CO], 20082009.


CROSSREFS

Sequence in context: A192573 A284994 A107113 * A032256 A324765 A208602
Adjacent sequences: A156804 A156805 A156806 * A156808 A156809 A156810


KEYWORD

hard,more,nonn


AUTHOR

Lars Eirik Danielsen (larsed(AT)ii.uib.no), Feb 16 2009


STATUS

approved



