|
|
A156783
|
|
Primes : if sums of prime number and 6 consecutive prime numbers on-left-and-on-right are also primes.
|
|
3
|
|
|
43, 47, 53, 71, 79, 89, 107, 113, 127, 137, 151, 359, 401, 499, 503, 617, 881, 883, 1097, 1279, 1787, 1997, 2213, 2281, 2393, 2551, 2591, 3209, 3221, 3673, 3847, 4111, 4513, 4519, 4603, 4651, 4703, 4877, 4987, 5237, 5431, 5501, 5741, 5801, 6073, 6367, 6833
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
19+23+29+31+37+41+43=223(prime);43+47+53+59+61+67+71=401(prime),... prime(n)+prime(n-1)+prime(n-2)+prime(n-3)+prime(n-4)+prime(n-5)+prime(n-6) are primes and prime(n)+prime(n+1)+prime(n+2)+prime(n+3)+prime(n+4)+prime(n+5)+prime(n+6) are also primes.
|
|
LINKS
|
Table of n, a(n) for n=1..47.
|
|
MATHEMATICA
|
lst={}; Do[p0=Prime[n+0]; p1=Prime[n+1]; p2=Prime[n+2]; p3=Prime[n+3]; p4=Prime[n+4]; p5=Prime[n+5]; p6=Prime[n+6]; p7=Prime[n+7]; p8=Prime[n+8]; p9=Prime[n+9]; p10=Prime[n+10]; p11=Prime[n+11]; p12=Prime[n+12]; If[PrimeQ[p0+p1+p2+p3+p4+p5+p6]&&PrimeQ[p6+p7+p8+p9+p10+p11+p12], AppendTo[lst, p6]], {n, 8!}]; lst
|
|
CROSSREFS
|
Cf. A156781, A156782
Sequence in context: A095487 A140755 A095479 * A273595 A334094 A033230
Adjacent sequences: A156780 A156781 A156782 * A156784 A156785 A156786
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Feb 15 2009
|
|
STATUS
|
approved
|
|
|
|