

A156759


a(1)=2, a(n+1) is the smallest composite number > a(n) with smallest prime factor >= smallest prime factor of a(n).


13



2, 4, 6, 8, 9, 15, 21, 25, 35, 49, 77, 91, 119, 121, 143, 169, 221, 247, 289, 323, 361, 437, 529, 667, 713, 841, 899, 961, 1147, 1271, 1333, 1369, 1517, 1591, 1681, 1763, 1849, 2021, 2209, 2491, 2773, 2809, 3127, 3233, 3481, 3599, 3721, 4087, 4331, 4453, 4489
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Apart from a(1), this is a sequence of increasing composites such that the derived sequence of their least prime factors is nondecreasing.  R. J. Mathar, Feb 20 2009
Except for a(1)=2, this is the sequence of numbers k such that the smallest prime factor of k is the largest prime less than or equal to the square root of k.  Michael J. Hardy, Nov 29 2013
If, using the standard primality test for a number N by dividing N by consecutive primes <= sqrt(N), it is only on the last step that we conclude that N is not prime, then we call N a "preprime". So, by the last comment, the sequence of preprimes coincides with this sequence for n>=2. Note that, except for 8, all preprimes are semiprimes.  Vladimir Shevelev, Sep 14 2014


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
V. Shevelev, A classification of the positive integers over primes


FORMULA

For n>1, lpf(a(n)) = prime(pi(sqrt(a(n))), where pi(n) = A000720(n).  Vladimir Shevelev, Sep 17 2014


EXAMPLE

a(1)=2;
a(2)=4=2*2 (2=2) where 2=2;
a(3)=6=3*2 (3>2) where 2=2;
a(4)=8=2*2*2 (2=2=2) where 2=2;
a(5)=9=3*3 (3=3) where 3>2;
a(6)=15=5*3 (5>3) where 3=3;
a(7)=21=7*3 (7>3) where 3=3;
a(8)=25=5*5 (5>3) where 5>3, etc.


MAPLE

A020639 := proc(n) min(op(numtheory[factorset](n))) ; end: A156759 := proc(n) option remember ; local a; if n = 1 then 2; else for a from procname(n1)+1 do if not isprime(a) then if A020639(a) >= A020639(procname(n1)) then RETURN(a) ; fi; fi; od: fi; end: seq(A156759(n), n=1..100) ; # R. J. Mathar, Feb 20 2009


MATHEMATICA

lpf[n_] := FactorInteger[n][[1, 1]]; a[1] = 2; a[n_] := a[n] = Module[{k = a[n  1] + 1, p = lpf[a[n  1]]}, While[PrimeQ[k]  lpf[k] < p, k++]; k]; Array[a, 100] (* Amiram Eldar, Sep 19 2019 *)
nxt[n_]:=Module[{k=n+1, spf}, spf=FactorInteger[n][[1, 1]]; While[PrimeQ[k]  FactorInteger[k][[1, 1]]<spf, k++]; k]; NestList[nxt, 2, 60] (* Harvey P. Dale, Apr 23 2020 *)


CROSSREFS

Cf. A002808, A156604.
Sequence in context: A227979 A349151 A080223 * A340609 A340606 A276138
Adjacent sequences: A156756 A156757 A156758 * A156760 A156761 A156762


KEYWORD

nonn


AUTHOR

JuriStepan Gerasimov, Feb 15 2009


EXTENSIONS

Corrected by R. J. Mathar, Feb 20 2009


STATUS

approved



