login
A156715
Let k=1; then T(n,m) = (((2*k+1)/(m+k+1))*binomial(n-1-k, m-k)*binomial(n+k, m+k) + ((2*k+1)/(n-m+k))*binomial(n-1-k, n-m-1-k)*binomial(n+k, n-m-1+k)), irregular triangle.
1
3, 3, 3, 12, 3, 3, 25, 25, 3, 3, 42, 90, 42, 3, 3, 63, 231, 231, 63, 3, 3, 88, 490, 840, 490, 88, 3, 3, 117, 918, 2394, 2394, 918, 117, 3, 3, 150, 1575, 5796, 8820, 5796, 1575, 150, 3, 3, 187, 2530, 12474, 26796, 26796, 12474, 2530, 187, 3
OFFSET
0,1
EXAMPLE
{3, 3},
{3, 12, 3},
{3, 25, 25, 3},
{3, 42, 90, 42, 3},
{3, 63, 231, 231, 63, 3},
{3, 88, 490, 840, 490, 88, 3},
{3, 117, 918, 2394, 2394, 918, 117, 3},
{3, 150, 1575, 5796, 8820, 5796, 1575, 150, 3},
{3, 187, 2530, 12474, 26796, 26796, 12474, 2530, 187, 3}
MATHEMATICA
With[{k = 1}, Table[(((2 k + 1)/(m + k + 1))*Binomial[n - 1 - k, m - k] * Binomial[n + k, m + k] + ((2 k + 1)/(n - m + k))*Binomial[n - 1 - k, n - m - 1 - k] * Binomial[n + k, n - m - 1 + k]), {n, k + 1, 10}, {m, 0, n - 1}]] // Flatten (* Michael De Vlieger, Dec 19 2022 *)
CROSSREFS
Cf. A156716.
Sequence in context: A274993 A233202 A101480 * A133797 A225073 A152575
KEYWORD
nonn,tabf,less
AUTHOR
Roger L. Bagula, Feb 14 2009
STATUS
approved