

A156702


Numbers n such that n^21 == 0 mod 24^2.


2



1, 127, 161, 287, 289, 415, 449, 575, 577, 703, 737, 863, 865, 991, 1025, 1151, 1153, 1279, 1313, 1439, 1441, 1567, 1601, 1727, 1729, 1855, 1889, 2015, 2017, 2143, 2177, 2303, 2305, 2431, 2465, 2591, 2593, 2719, 2753, 2879, 2881, 3007, 3041, 3167, 3169
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Numbers n that are +1 mod 9 and +1 mod 32. [Charles R Greathouse IV, Dec 23 2011]


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,1).


FORMULA

G.f.: (x^4 + 2*x^3 + 126*x^2 + 34*x + 127)/(x^5  x^4  x + 1) [From Alexander R. Povolotsky, Feb 15 2009]
a(n)=36+27*(1)^n+(44*I)*(I)^n+(4+4*I)*I^n+72*n [From Harvey P. Dale, Apr 25 2012]


MATHEMATICA

LinearRecurrence[{1, 0, 0, 1, 1}, {1, 127, 161, 287, 289}, 50] (* Vincenzo Librandi, Feb 08 2012 *)
With[{c=24^2}, Select[Range[3200], Divisible[#^21, c]&]] (* Harvey P. Dale, Apr 25 2012 *)


PROG

(PARI) a(n)=n\4*288+[1, 1, 127, 161][n%4+1]


CROSSREFS

Sequence in context: A178088 A006285 A094933 * A180536 A137985 A065092
Adjacent sequences: A156699 A156700 A156701 * A156703 A156704 A156705


KEYWORD

nonn,easy


AUTHOR

Vincenzo Librandi, Feb 13 2009


EXTENSIONS

Corrected and edited by Vinay Vaishampayan, Jun 23 2010


STATUS

approved



