login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156681 Consider all Pythagorean triangles A^2 + B^2 = C^2 with A<B<C; sequence gives values of B, sorted to correspond to increasing A (A009004(n)). 6

%I

%S 4,12,8,24,15,12,40,24,60,16,35,84,48,20,36,112,30,63,144,24,80,180,

%T 21,48,99,28,72,220,120,264,32,45,70,143,60,312,168,36,120,364,45,96,

%U 195,420,40,72,224,480,60,126,255,44,56,180,544,288,84,120,612,48,77,105

%N Consider all Pythagorean triangles A^2 + B^2 = C^2 with A<B<C; sequence gives values of B, sorted to correspond to increasing A (A009004(n)).

%C The ordered sequence of B values is A009012(n) (allowing repetitions) and A009023(n) (excluding repetitions)

%D Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134.

%D Sierpinski, W.; Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003.

%H Shujing Lyu, <a href="/A156681/b156681.txt">Table of n, a(n) for n = 1..5000</a>

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html">Right-angled Triangles and Pythagoras' Theorem</a>

%H Robert Recorde, <a href="http://archive.org/details/TheWhetstoneOfWitte">The Whetstone of Witte</a>, whiche is the seconde parte of Arithmeteke: containing the extraction of rootes; the cossike practise, with the rule of equation; and the workes of Surde Nombers, London, 1557. See <a href="http://archive.org/stream/TheWhetstoneOfWitte#page/n55/mode/2up/">p. 57</a>.

%F Sqrt(A156682(n)^2-A009004(n)^2)

%e As the first four Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (6,8,10) and (7,24,25), then a(1)=4, a(2)=12, a(3)=8 and a(4)=24.

%t PythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[i<n,h=Sqrt[i^2+j^2];If[IntegerQ[h] && j<n,AppendTo[t,{i,j,h}]]; If[j<n,j++,i++;j=i+1]];t];k=20;data1=PythagoreanTriplets[2k^2+2k+1];data2=Select[data1,#[[1]]<=2k+1 &];#[[2]] &/@data2

%Y Cf. A156682, A009004, A009012, A009023.

%K easy,nice,nonn

%O 1,1

%A _Ant King_, Feb 17 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 10:56 EDT 2021. Contains 343087 sequences. (Running on oeis4.)