login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156679 Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < B<C); sequence gives values of C, sorted to correspond to increasing A (A020884(n)). 7
5, 13, 25, 17, 41, 61, 37, 85, 113, 65, 145, 181, 29, 101, 221, 265, 145, 313, 365, 53, 197, 421, 481, 257, 65, 545, 613, 85, 325, 685, 89, 761, 401, 841, 925, 125, 485, 1013, 1105, 73, 577, 1201, 149, 1301, 173, 677, 1405, 1513, 785, 185, 1625, 1741, 109, 229 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The ordered sequence of A values is A020884(n) and the ordered sequence of C values is A020882(n) (allowing repetitions) and A008846(n) (excluding repetitions).

REFERENCES

Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134.

Sierpinski, W.; Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000

Ron Knott, Right-angled Triangles and Pythagoras' Theorem

EXAMPLE

As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=5, a(2)=13, a(3)=25 and a(4)=17.

MATHEMATICA

PrimitivePythagoreanTriplets[n_]:=Module[{t={{3, 4, 5}}, i=4, j=5}, While[i<n, If[GCD[i, j]==1, h=Sqrt[i^2+j^2]; If[IntegerQ[h] && j<n, AppendTo[t, {i, j, h}]]; ]; If[j<n, j+=2, i++; j=i+1]]; t]; k=38; data1=PrimitivePythagoreanTriplets[2k^2+2k+1]; data2=Select[data1, #[[1]]<=2k+1 &]; #[[3]] &/@data2

PROG

(Haskell)

a156679 n = a156679_list !! (n-1)

a156679_list = f 1 1 where

   f u v | v > uu `div` 2        = f (u + 1) (u + 2)

         | gcd u v > 1 || w == 0 = f u (v + 2)

         | otherwise             = w : f u (v + 2)

         where uu = u ^ 2; w = a037213 (uu + v ^ 2)

-- Reinhard Zumkeller, Nov 09 2012

CROSSREFS

Cf. A020884, A020882, A008846, A156678, A156682.

Cf. A037213.

Sequence in context: A271937 A121511 A283750 * A190618 A309585 A004627

Adjacent sequences:  A156676 A156677 A156678 * A156680 A156681 A156682

KEYWORD

easy,nice,nonn

AUTHOR

Ant King, Feb 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 7 13:36 EDT 2020. Contains 333305 sequences. (Running on oeis4.)