The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156678 Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < B
 4, 12, 24, 15, 40, 60, 35, 84, 112, 63, 144, 180, 21, 99, 220, 264, 143, 312, 364, 45, 195, 420, 480, 255, 56, 544, 612, 77, 323, 684, 80, 760, 399, 840, 924, 117, 483, 1012, 1104, 55, 575, 1200, 140, 1300, 165, 675, 1404, 1512, 783, 176, 1624, 1740, 91, 221, 899 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The ordered sequence of A values is A020884(n) and the ordered sequence of B values is A020883(n) (allowing repetitions) and A024354(n) (excluding repetitions) REFERENCES Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134. Sierpinski, W.; Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 FORMULA a(n)=A020884(n)+A156680(n) EXAMPLE As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=4, a(2)=12, a(3)=24 and a(4)=15. MATHEMATICA PrimitivePythagoreanTriplets[n_]:=Module[{t={{3, 4, 5}}, i=4, j=5}, While[i uu `div` 2        = f (u + 1) (u + 2)          | gcd u v > 1 || w == 0 = f u (v + 2)          | otherwise             = v : f u (v + 2)          where uu = u ^ 2; w = a037213 (uu + v ^ 2) -- Reinhard Zumkeller, Nov 09 2012 CROSSREFS A020884, A020883, A024354, A156679, A042965, A156680, A156681, A042965. Cf. A037213. Sequence in context: A008047 A008065 A321685 * A277513 A319887 A319868 Adjacent sequences:  A156675 A156676 A156677 * A156679 A156680 A156681 KEYWORD easy,nonn AUTHOR Ant King, Feb 15 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 02:00 EDT 2020. Contains 333153 sequences. (Running on oeis4.)