login
A156614
a(1)=2, a(n+1) is the smallest prime with sum of even digits >= sum of even digits of a(n).
1
2, 23, 29, 41, 43, 47, 61, 67, 83, 89, 181, 263, 269, 281, 283, 461, 463, 467, 487, 661, 683, 863, 881, 883, 887, 1889, 2683, 2687, 2689, 2861, 2887, 4861, 4889, 6689, 6863, 6869, 6883, 8681, 8689, 8861, 8863, 8867, 8887, 26881
OFFSET
1,1
COMMENTS
An increasing sequence of primes a(n) such that the sequence A071648(a(n)) is nondecreasing. - R. J. Mathar, May 15 2010
LINKS
EXAMPLE
2, 23(2=2), 29(2=2), 41(4>2), 43(4=4), 61(6>4), 67(6=6), 83(8>6), 89(8=8), 181(8=8), 263(2+6=8), 269(2+6=2+6), 281(2+8>2+6), 283(2+8=2+8), 461(4+6=2+8), etc.
MATHEMATICA
t={}; max=0; Do[p=Prime[i]; If[(x=Total[Select[IntegerDigits[p], EvenQ[#] &]])>=max, max = x; AppendTo[t, p]], {i, 3000}]; t (* Jayanta Basu, May 22 2013 *)
sped[p_]:=Module[{d1=Total[Select[IntegerDigits[p], EvenQ]], p2=NextPrime[p]}, While[ Total[ Select[ IntegerDigits[ p2], EvenQ]]<d1, p2=NextPrime[p2]]; p2]; NestList[sped, 2, 50] (* or *) DeleteDuplicates[Table[{p, Total[Select[IntegerDigits[p], EvenQ]]}, {p, Prime[Range[ 3000]]}], Greater[ #1[[2]], #2[[2]]]&][[;; , 1]](* Harvey P. Dale, Jan 22 2024 *)
CROSSREFS
Cf. A000040.
Sequence in context: A141533 A045391 A154758 * A355430 A226016 A235150
KEYWORD
nonn,base,less
AUTHOR
EXTENSIONS
Corrected (4861 inserted) by R. J. Mathar, May 15 2010
STATUS
approved