OFFSET
0,3
LINKS
G. C. Greubel, Rows n = 0..50 if the irregular triangle, flattened
FORMULA
T(n, k) = [x^k]( (1-x)^2 * Sum_{j=0..n-1} (j+1)*x^j ).
T(n, k) = [k=0] - (n+1)*[k=n] + n*[k=n+1] for n > 0, with T(0, 0) = 0. - G. C. Greubel, Jan 03 2022
EXAMPLE
Irregular triangle begins as:
0;
1, -2, 1;
1, 0, -3, 2;
1, 0, 0, -4, 3;
1, 0, 0, 0, -5, 4;
1, 0, 0, 0, 0, -6, 5;
1, 0, 0, 0, 0, 0, -7, 6;
1, 0, 0, 0, 0, 0, 0, -8, 7;
1, 0, 0, 0, 0, 0, 0, 0, -9, 8;
1, 0, 0, 0, 0, 0, 0, 0, 0, -10, 9;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -11, 10;
...
MATHEMATICA
T[n_]:= If[n==0, 0, CoefficientList[1 -(n+1)*x^n +n*x^(n+1), x]];
Table[T[n], {n, 0, 15}]//Flatten (* modified by G. C. Greubel, Jan 03 2022 *)
PROG
(Sage) [0]+flatten([[( 1 -(n+1)*x^n +n*x^(n+1) ).series(x, n+2).list()[k] for k in (0..n+1)] for n in (1..12)]) # G. C. Greubel, Jan 03 2022
CROSSREFS
KEYWORD
sign,tabf,less
AUTHOR
Roger L. Bagula, Feb 10 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 03 2022
STATUS
approved