login
A156561
Floor(Fibonacci(2n+1)/9).
0
0, 0, 0, 1, 3, 9, 25, 67, 177, 464, 1216, 3184, 8336, 21824, 57136, 149585, 391619, 1025273, 2684201, 7027331, 18397793, 48166048, 126100352, 330135008, 864304672, 2262779008, 5924032352, 15509318049, 40603921795, 106302447337, 278303420217
OFFSET
0,5
FORMULA
a(n) = ( A000045(2n+1)-A154811(n) )/9 = floor(A122367(n)/9) = floor(A001519(n+1)/9) = floor( |A099496(n)|/9).
a(n)=3a(n-1)-a(n-2)+|A112690(n+10)|, i.e., a(n)-3a(n-1)+a(n-2) is a sequence of period 12 containing 0's and 1's. - R. J. Mathar, Feb 23 2009
G.f.: (1-x+x^2)/((1-x)(1+x^2)(1-3x+x^2)(1-x^2+x^4)). - R. J. Mathar, Feb 23 2009
MATHEMATICA
Floor[Fibonacci[2*Range[0, 30]+1]/9] (* or *) LinearRecurrence[{4, -4, 1, 0, 0, -1, 4, -4, 1}, {0, 0, 0, 1, 3, 9, 25, 67, 177}, 31] (* Harvey P. Dale, Jun 06 2016 *)
CROSSREFS
Cf. A069403.
Sequence in context: A106514 A325915 A268451 * A085327 A069403 A291021
KEYWORD
nonn
AUTHOR
Paul Curtz, Feb 10 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Jan 23 2009, Feb 23 2009
STATUS
approved