login
Primes of the form 2^n-5.
5

%I #28 Sep 04 2024 18:57:21

%S 3,11,59,251,1019,4091,262139,1048571,67108859,4294967291,68719476731,

%T 72057594037927931,73786976294838206459,

%U 332306998946228968225951765070086139,1361129467683753853853498429727072845819,1427247692705959881058285969449495136382746619

%N Primes of the form 2^n-5.

%C If p = 2^n-5 is prime, then p*2^(n-1) is abundant with abundance 4 (see A088832). - _Davide Rotondo_, Oct 25 2020

%H Vincenzo Librandi, <a href="/A156560/b156560.txt">Table of n, a(n) for n = 1..28</a>

%F a(n) = 2^A059608(n) - 5.

%t Select[Table[2^n-5,{n,2,400}],PrimeQ] (* _Vincenzo Librandi_, Jul 26 2012 *)

%o (Magma) [ a: n in [2..500] | IsPrime(a) where a is 2^n-5 ];

%o (PARI) for(n=1,300,q=2^n-5;if(isprime(q),print(q))) /* gives more terms in <10secs */ \\ _Joerg Arndt_, Dec 03 2010

%Y Corresponding n's are in A059608.

%Y Cf. A088832.

%K nonn

%O 1,1

%A _Vincenzo Librandi_, Feb 10 2009

%E Edited by _Zak Seidov_