login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156554 The number of integer sequences of length d = 2n+1 such that the sum of the terms is 0 and the sum of the absolute values of the terms is d-1. 24
1, 6, 110, 2562, 66222, 1815506, 51697802, 1511679210, 45076309166, 1364497268946, 41800229045610, 1292986222651646, 40317756506959050, 1265712901796074842, 39965073938276694002, 1268208750951634765562, 40419340092267053380782, 1293151592990764737265490 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Let b(n) = S(d,n) be the coordination sequence of the lattice A_d. Then this sequence is a(n) = S(2n,n). See Conway-Sloane. The sequence is defined by Couveignes et al.

LINKS

R. H. Hardin and Colin Barker, Table of n, a(n) for n = 0..300 (terms up to n=26 from R. H. Hardin)

J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).

J.-M. Couveignes, T. Ezome and R. Lercier. Elliptic periods and primality proving, (2008) (pdf.

FORMULA

a(n) = S(2n,n) where S(d,n) = Sum_{k=0..d} C(d,k)^2*C(n-k+d-1,d-1) from formula (22) in Conway-Sloane.

EXAMPLE

For n = 1 the a(n) = 6 sequences are (1,-1,0),(-1,1,0),(1,0,-1),(-1,0,1),(0,1,-1),(0,-1,1).

MAPLE

S:=proc(d, n) add(binomial(d, k)^2*binomial(n-k+d-1, d-1), k=0..d); end proc; a:=n->S(2*n, n);

MATHEMATICA

Table[ Binomial[-1 + 3 n, -1 + 2 n] HypergeometricPFQ[{-2 n, -2 n, -n}, {1, 1 - 3 n}, 1], {n, 0, 10}]  (* Eric W. Weisstein, Feb 10 2009 *)

PROG

(PARI) S(d, n) = sum(k=0, d, binomial(d, k)^2*binomial(n-k+d-1, d-1));

concat(1, vector(20, n, S(2*n, n))) \\ Colin Barker, Dec 24 2015

CROSSREFS

a(n) = A103881(2n, n).

Sequence in context: A119814 A227443 A050884 * A197325 A197978 A241702

Adjacent sequences:  A156551 A156552 A156553 * A156555 A156556 A156557

KEYWORD

easy,nice,nonn

AUTHOR

W. Edwin Clark, Feb 09 2009

EXTENSIONS

Formula incorrectly copied from A143699 removed by R. J. Mathar, Mar 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 07:02 EST 2017. Contains 294915 sequences.