|
|
A156431
|
|
Number of n X n arrays of squares of integers, symmetric under 90-degree rotation, with all rows summing to 2.
|
|
1
|
|
|
1, 0, 2, 0, 12, 0, 90, 0, 810, 0, 8940, 0, 116760, 0, 1756860, 0, 29933820, 0, 569744280, 0, 11981526480, 0, 275893362360, 0, 6903968231160, 0, 186558764792400, 0, 5413973807642400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,3
|
|
COMMENTS
|
a(2*n) is the number of n X n 0-1 matrices A such that all row sums of A + A^T equal 2. - Robert Israel, Feb 19 2019
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 2..807
Robert Israel, Proof of recurrence
|
|
FORMULA
|
From Robert Israel, Feb 18 2019: (Start)
a(2k+1) = 0.
a(2k) = 2*(k-1)*(k-2)*a(2k-6) - (k-1)*a(2k-4) + (2k-1)*a(2k-2).
(End)
|
|
MAPLE
|
f:= gfun:-rectoproc({b(k) = 2*(k-1)*(k-2)*b(k-3)-(k-1)*b(k-2)+(2*k-1)*b(k-1), b(0)=1, b(1)=1, b(2)=2}, b(k), remember):
seq(op([f(k), 0]), k=0..50); # Robert Israel, Feb 18 2019
|
|
CROSSREFS
|
Sequence in context: A167345 A292496 A285480 * A067994 A236219 A143246
Adjacent sequences: A156428 A156429 A156430 * A156432 A156433 A156434
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Feb 09 2009
|
|
STATUS
|
approved
|
|
|
|