login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156348 Triangle T(n,k) read by rows. Column of Pascal's triangle interleaved with k-1 zeros. 10
1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 3, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 0, 4, 0, 0, 0, 1, 1, 0, 6, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 10, 10, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

The rows of the Pascal triangle are here found as square root parabolas like in the plots at www.divisorplot.com. Central binomial coefficients are found at the square root boundary.

A156348 * A000010 = A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, ...). - Gary W. Adamson, Feb 16 2009

Row sums give A157019.

LINKS

Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened

el Houcein el Abdalaoui, Mohamed Dahmoune and Djelloul Ziadi, On the transition reduction problem for finite automata, arXiv preprint arXiv:1301.3751 [cs.FL], 2013. - From N. J. A. Sloane, Feb 12 2013

Jeff Ventrella, Divisor Plot

Index entries for triangles and arrays related to Pascal's triangle

EXAMPLE

Table begins:

1

1  1

1  0  1

1  2  0  1

1  0  0  0  1

1  3  3  0  0  1

1  0  0  0  0  0  1

1  4  0  4  0  0  0  1

1  0  6  0  0  0  0  0  1

1  5  0  0  5  0  0  0  0  1

1  0  0  0  0  0  0  0  0  0  1

1  6 10 10  0  6  0  0  0  0  0  1

1  0  0  0  0  0  0  0  0  0  0  0  1

1  7  0  0  0  0  7  0  0  0  0  0  0  1

1  0 15  0 15  0  0  0  0  0  0  0  0  0  1

1  8  0 20  0  0  0  8  0  0  0  0  0  0  0  1

1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1

1  9 21  0  0 21  0  0  9  0  0  0  0  0  0  0  0  1

1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1

1 10  0 35 35  0  0  0  0 10  0  0  0  0  0  0  0  0  0  1

MAPLE

A156348 := proc(n, k)

    if k < 1 or k > n then

        return 0 ;

    elif n mod k = 0 then

        binomial(n/k-2+k, k-1) ;

    else

        0 ;

    end if;

end proc: # R. J. Mathar, Mar 03 2013

MATHEMATICA

T[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0];

Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Nov 16 2017 *)

PROG

(Haskell)  Following Mathar's Maple program.

a156348 n k = a156348_tabl !! (n-1) !! (k-1)

a156348_tabl = map a156348_row [1..]

a156348_row n = map (f n) [1..n] where

   f n k = if r == 0 then a007318 (n' - 2 + k) (k - 1) else 0

           where (n', r) = divMod n k

-- Reinhard Zumkeller, Jan 31 2014

CROSSREFS

Cf. A007318, A051731,A156834.

Sequence in context: A216282 A147861 A167271 * A306437 A227990 A101614

Adjacent sequences:  A156345 A156346 A156347 * A156349 A156350 A156351

KEYWORD

nonn,tabl,easy,look

AUTHOR

Mats Granvik, Feb 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 10:17 EDT 2019. Contains 326149 sequences. (Running on oeis4.)