Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #19 Jan 27 2022 17:23:12
%S 2,18,194,2130,23426,257682,2834498,31179474,342974210,3772716306,
%T 41499879362,456498672978,5021485402754,55236339430290,
%U 607599733733186,6683597071065042,73519567781715458,808715245598870034,8895867701587570370,97854544717463274066
%N Expansion of (2-6*x)/(1-12*x+11*x^2).
%H Harvey P. Dale, <a href="/A156341/b156341.txt">Table of n, a(n) for n = 0..960</a>
%H Tomislav Došlić and Frode Måløy, <a href="http://dx.doi.org/10.1016/j.disc.2009.11.026">Chain hexagonal cacti: Matchings and independent sets</a>, Discr. Math., 310 (2010), 1676-1690.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-11).
%F From _Felix P. Muga II_, Mar 19 2014: (Start)
%F a(n) = 12*a(n-1)-11*a(n-2) for n>=2, a(0)=2, a(1)=18.
%F a(n) = a(n-1)+16*11^(n-1) for n >=1, a(0)=2.
%F a(n) = 10*a(n-1)+11*a(n-2)-8 for n>=2, a(0)=2, a(1)=18.
%F a(n) = (8/5)*11^n + 2/5. (End)
%t CoefficientList[Series[(2-6x)/(1-12x+11x^2),{x,0,40}],x] (* or *) LinearRecurrence[{12,-11},{2,18},40] (* _Harvey P. Dale_, Jan 27 2022 *)
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, May 22 2010