OFFSET
1,1
COMMENTS
The number of terms in the sequence is infinite, because there are numbers like 34425 = 3^4*425, 344250 = 3^4*4250, 3442500 = 3^4*42500, etc.
LINKS
Jean-Marc Falcoz, Illustration
EXAMPLE
2592 = 2^5 * 9^2
34425 = 3^4 * 425
35721 = 3^5 * 7 * 21
312325 = 31^2 * 325
344250 = 3^4 * 4250
357210 = 3^5 * 7 * 210
492205 = 49^2 * 205
1492992 = 1 * 4 * 9 * 2^9 * 9^2
1729665 = 17^2 * 9 * 665
1769472 = 1^7 * 6 * 9 * 4^7 * 2
3123250 = 31^2 * 3250
3365793 = 3*3^6 * 57 * 9 * 3
3442500 = 3^4 * 42500
3472875 = 3^4 * 7^2 * 875
3572100 = 3^5 * 7 * 2100
3639168 = 3^6 * 39 * 16 * 8
4922050 = 49^2 * 2050
6718464 = 6^7 * 1^84 * 6 * 4
6967296 = 6 * 9 * 6 * 7 * 2^9 * 6
7587328 = 7 * 58 * 73 * 2^8
10744475 = 1^0 * 7^4 * 4475
10756480 = 10 * 7^5 * 64 * 8^0
13745725 = 1^3 * 7^4 * 5725
13942125 = 1^3 * 9^4 * 2125
14569245 = 1^4 * 569^2 * 45
16746975 = 1^6 * 7^4 * 6975
17266392 = 172 * 66 * 39^2
17296650 = 17^2 * 9 * 6650
17577728 = 17 * 577 * 7 * 2^8
17694720 = 1^7 * 6 * 9 * 4^7 * 20.
------------------------------
3^5 * 1482 * 9760 = 3514829760
is the only pandigital with this property. - Jean-Marc Falcoz, Mar 19 2009
-----------------------------
17 * 577 * 7 * 2^8 = 17577728
1297 * 7^3 * 31 * 941 = 12977331941
are the only composite integers up to 10^11 that are printer's errors with decomposition in prime factors. - Jean-Marc Falcoz, Sep 09 2018
CROSSREFS
This one is harder to compute because it's more general; you can have decompositions like ab*c*def^g*h*ij.
KEYWORD
base,nonn
AUTHOR
Jean-Marc Falcoz, Feb 08 2009, Feb 14 2009
EXTENSIONS
Edited by N. J. A. Sloane, Feb 22 2009
STATUS
approved