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Abstract

The Kolakoski sequence is a self-describing sequence with many interesting prop-
erties. In this paper, we introduce a recurrence relation for a companion to the Ko-
lakoski sequence. The recurrence demonstrates a resemblance to a well-known formula
for Golomb’s sequence. We conclude by raising the question whether the analytical
methods employed in studying Golomb’s sequence can be adapted to the Kolakoski
sequence.

1 Introduction

The Kolakoski sequence [1, 2], named after the mathematician William Kolakoski, is an
infinite sequence that self-encodes its run lengths. A run is a streak of equal terms. The
Online Encyclopedia of Integer Sequences [3] defines the Kolakoski sequence, here denoted
by kn, as: “. . . kn is the length of n-th run . . . ”.

kn = (1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, . . .) = A000002

Example 1. The first six runs in the Kolakoski sequence are (1), (2,2), (1,1), (2), (1), and
(2,2). According to the definition of the sequence, k3 = 2 indicates that the third run has a
length of two: (1, 1). Similarly, for k5 = 1, the fifth run consists of a single element: (1).

There are many interesting questions regarding the properties of the Kolakoski sequence.
For instance, it remains unclear whether the sequence has an asymptotic equality of the
number of ones and twos. Empirical evidence, for example from Nilsson [6], supports this
possibility. Another open question asks if there exist a direct formula for the n-th term in the
Kolakoski sequence. Previous studies, including [4, 5], have found recurrence relations for kn
and its companion sequences. In this study, we introduce a recurrence that closely resembles
a well-known recurrence for Golomb’s sequence. We conclude by posing the question of
whether the analytical methods applied to Golomb’s sequence can be extended to investigate
the Kolakoski sequence.

One way to construct the Kolakoski sequence is to start with the terms (1, 2, 2) and n = 3
(marked with *) and append the sequence with kn symbols (highlighted in bold):

1. At k3 = 2, the third run has length two: append two 1s. (1,2,*2,1,1)
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2. At k4 = 1, the fourth run has length one: append one 2. (1,2,2,*1,1,2)

3. At k5 = 1, the fifth run has length one: append one 1. (1,2,2,1,*1,2,1)

4. At k6 = 2, the sixth run has length two: append two 2s. (1,2,2,1,1,*2,1,2,2)

5. . . .

Note that in each step described above, a complete run is appended. Consequently, for
every n, we must alternate the symbol to append. This construction algorithm leads us to
the equivalent mapping found by Culik II and Lepistö [7]:

If n is even then 1 → 2 and 2 → 22
If n is odd then 1 → 1 and 2 → 11

2 A companion sequence

To complement the Kolakoski sequence, we create a companion sequence denoted by an. We
obtain an by appending the index n to a list for each term that is appended to the Kolakoski
sequence during the construction process described earlier. We refer to the terms an as the
origin of the corresponding terms kn.

kn = (1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, . . .) = A000002

an = (1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, . . .) = A156253

The companion sequence, an, is known as A156253.

Example 2. The terms k4 = 1 and k5 = 1 originated from the 2 at position 3 in k, resulting
in a4 = 3 and a5 = 3. The term k6 = 2 originated from the fourth term, resulting in a6 = 4.

In the formula section of A000002, Benoit Cloitre provides a relationship between an and
kn:

Lemma 3. For positive integers n, we have

kn =
3 + (−1)an

2
= gcd(an, 2)

Proof. We recall the mapping by Culik II and Lepistö [7] for the Kolakoski sequence:

If n is even then 1 → 2 and 2 → 22
If n is odd then 1 → 1 and 2 → 11
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This means that ones in the Kolakoski sequence originate from odd values of n, while
twos originate from even values of n. By definition, the terms of the sequence an represent
the origin of the corresponding terms in kn. Thus, if an is odd, then kn equals one, and if an
is even, then kn equals two. We can now substitute odd and even values of an into gcd(an, 2)
to correctly obtain one and two, respectively.

Because of the self-describing property of the Kolakoski sequence, the relationship be-
tween the sequences kn and an also reveals the length of the run corresponding to the term
kn and an.

We will now prove a recurrence relation for an that was conjectured by Sequence Machine
[8]. The statement of the theorem is as follows:

Theorem 4. Let a1 = 1. For n > 1 we have an = an−gcd(aan−1 ,2)
+ 1.

Proof. First note that gcd(aan−1 , 2) uses Lemma 3 to determine the length of the run be-
longing to the previous term by substituting n with an−1. We will use induction to prove
the theorem.

Base case: Let n = 2. We know that a1 = 1. Then, we have a2 = a2−gcd(aa2−1 ,2)
+ 1 =

a2−gcd(a1,2) + 1 = a2−1 + 1 = a1 + 1 = 2. The base case holds.
Inductive step: Show that for every positive k, if ak = ak−gcd(aak−1

,2) + 1 holds, then
ak+1 also holds. For k > 1, there are three possible cases:

1. If the run length for ak is one, gcd(aak , 2) = 1, we expect to start a new run: ak+1 = ak+
1. By the induction hypothesis we have ak+1 = ak+1−gcd(aak ,2)

+1 = ak+1−1+1 = ak+1.

Example 5. (4, 5, 6) = (ak−1, ak, ak+1)

2. If the run length for ak is two, gcd(aak , 2) = 2, and is the first term in its run, we
expect to extend the run: ak+1 = ak. By the induction hypothesis we have ak+1 =
ak+1−gcd(aak ,2)

+ 1 = ak+1−2 + 1 = ak−1 + 1 = ak.

Example 6. (5, 6, 6) = (ak−1, ak, ak+1)

3. If the run length for ak is two, gcd(aak , 2) = 2, and is the second term in its run,
we expect to start a new run: ak+1 = ak + 1. By the induction hypothesis we have
ak+1 = ak+1−gcd(aak ,2)

+ 1 = ak+1−2 + 1 = ak−1 + 1 = ak + 1.

Example 7. (6, 6, 7) = (ak−1, ak, ak+1)

In all cases, we have shown that the theorem holds for n = k + 1. By induction, the
theorem holds for all positive integers n.

We now have a formula for an and indirectly for kn (indirectly, in the sense that kn =
gcd(an, 2)). In the formula section of A156253, there is a conjectured formula:

a(n) = (a(a(n− 1)) mod 2) + a(n− 2) + 1

A proof for this variation of an can be constructed in a similar way.
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3 Similarity to Golomb’s sequence

In A156253, N. J. A. Sloane made the following comments:

This seems to be A001462 rewritten so the run lengths are given by A000002.
. . .

Note that the Kolakoski sequence A000002 and Golomb’s sequence A001462 have
very similar definitions, although the asymptotic behavior of A001462 is well-
understood, while that of A000002 is a mystery.

The Online Encyclopedia of Integer Sequences [3] definition of Golomb’s sequence, here
denoted by gn, is similar to Kolakoski’s: “. . . g(n) is the number of times n occurs . . . ”

g(n) = (1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, . . .) = A001462

The entry for A001462 has a formula by Colin Mallows:

gn = gn−ggn−1
+ 1

The formula gn indeed resembles of an:

an = an−gcd(aan−1 ,2)
+ 1

The only difference between an and gn is the additional greatest common divisor op-
eration. This operation limits the lengths of the runs to either one or two, depending on
the parity of aan−1 . This relationship between an and gn confirms N. J. A. Sloane’s first
observation.

The formula for Golomb’s sequence, gn works similarly to an. We can compute the term,
gn, by looking at the length of the previous term’s run, ggn−1 . We demonstrate the calculation
with two examples:

Example 8. For n = 15 (highlighted in bold), (1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6,6). We exam-
ine the run length of the previous term: gg14 = g6 = 4 indicating it should be four consecutive
sixes. We take n− 4 = 15− 4 = 11, which is the last term in the run of fives. Substituting
g11 = 5 into gn extends the run with another six, g15 = 5 + 1 = 6.

Example 9. For n = 16 (highlighted in bold), (1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6,7). We
examine the run length of the previous term gg15 = g6 = 4, indicating it should be four
consecutive sixes. We take n− 4 = 16− 4 = 12, which is on the first six in the run of sixes.
Substituting g12 = 6 into gn starts the next run of sevens, g16 = 6 + 1 = 7.

Marcus and Fine [9] showed that Golomb’s sequence can be approximated. Let ϕ be the
Golden Ratio and E(n) an error term, then gn ≈ ϕ2−ϕnϕ−1 + E(n). For more details, refer
to the formula section for A001462.
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4 Conclusion

In this paper, we have introduced an indirect recurrence relation for the Kolakoski sequence.
The recurrence bears a close resemblance to a formula for Golomb’s sequence. We are
interested in exploring whether the analytical techniques applied Golomb’s sequence can be
extended to the new recurrence. However, the added complexity of the greatest common
divisor operation may make it impossible. Nonetheless, studying the reasons behind this
difficulty could provide valuable insights.
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