login
A156234
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*A000204(n)*x^n/n ).
6
1, 1, 5, 10, 30, 63, 170, 355, 880, 1875, 4349, 9189, 20810, 43355, 95140, 198247, 424527, 875965, 1849535, 3781820, 7873167, 16005196, 32883560, 66390850, 135198990, 271051271, 546931398, 1090751095, 2183512495, 4329540830
OFFSET
0,3
COMMENTS
Compare to g.f. of partition numbers: exp( Sum_{n>=1} sigma(n)*x^n/n ),
and to the g.f. of Fibonacci numbers: exp( Sum_{n>=1} A000204(n)*x^n/n ) where A000204 is the Lucas numbers.
LINKS
FORMULA
a(n) = (1/n)*Sum_{k=1..n} sigma(n)*A000204(k)*a(n-k) for n>0, with a(0) = 1.
G.f.: Product_{n>=1} 1/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n).
Logarithmic derivative yields A225528.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 10*x^3 + 30*x^4 + 63*x^5 + 170*x^6 + 355*x^7 + ...
log(A(x)) = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 + ...
Also, the g.f. equals the product:
A(x) = 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6) * (1-7*x^4+x^8) * (1-11*x^5-x^10) * (1-18*x^6+x^12) * ... * (1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) * ...).
MAPLE
N:= 100: # to get a(0) to a(N)
G:= exp(add(numtheory:-sigma(n)*lucas(n)*x^n/n, n=1..N)):
S:= series(G, x, N+1):
seq(coeff(S, x, i), i=0..N); # Robert Israel, Dec 23 2015
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, sigma(k)*(fibonacci(k-1)+fibonacci(k+1))*x^k/k)+x*O(x^n)), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(prod(m=1, n, 1/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A225528, A000203 (sigma), A000204 (Lucas), A000041 (partitions), A000045.
Sequence in context: A294286 A133629 A156302 * A048010 A002571 A077916
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2009
STATUS
approved