login
A156199
Period 12: repeat 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2 .
1
1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7
OFFSET
0,3
COMMENTS
The period is essentially the reversal of the period in A156194.
The first 7 elements of the period (1, 1, 4, 2, 4, 1, 1) are palindromic and the other 5, (2, 7, 1, 7, 2), too.
FORMULA
a(n) = A156094(n) mod 9.
a(n) = A156194(n+6).
G.f.: (1 + x + 4*x^2 + 2*x^3 + 4*x^4 + x^5 + x^6 + 2*x^7 + 7*x^8 + x^9 + 7*x^10 + 2*x^11)/( (1-x) * (1+x+x^2) * (1+x) * (1-x+x^2) * (1+x^2) * (x^4-x^2+1)). - R. J. Mathar, Nov 22 2009
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2}, 105] (* Ray Chandler, Aug 08 2015 *)
PadRight[{}, 110, {1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2}] (* Harvey P. Dale, Sep 14 2020 *)
CROSSREFS
Cf. A156194.
Sequence in context: A332330 A068454 A090976 * A135513 A176895 A335261
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Feb 05 2009
EXTENSIONS
Edited by R. J. Mathar, Nov 22 2009
STATUS
approved