Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Feb 18 2024 05:15:35
%S 2,1,1,1,6,1,1,30,30,1,1,159,360,159,1,1,1119,3639,3639,1119,1,1,
%T 10932,41262,57414,41262,10932,1,1,136764,582642,898632,898632,582642,
%U 136764,1,1,2031933,9957168,16634718,17182152,16634718,9957168,2031933,1,1
%N Triangle: m=3; e(n,k,n) = (k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m); t(n,k) = e(n,k,m) + e(n,n-k,m).
%F m=3; e(n,k,n) = (k + m - 1)*e(n - 1, k, m) + (m*n - k + 1 - m)*e(n - 1, k - 1, m);
%F t(n,k) = e(n,k,m) + e(n,n-k,m).
%e {2},
%e {1, 1},
%e {1, 6, 1},
%e {1, 30, 30, 1},
%e {1, 159, 360, 159, 1},
%e {1, 1119, 3639, 3639, 1119, 1},
%e {1, 10932, 41262, 57414, 41262, 10932, 1},
%e {1, 136764, 582642, 898632, 898632, 582642, 136764, 1},
%e {1, 2031933, 9957168, 16634718, 17182152, 16634718, 9957168, 2031933, 1},...
%t m = 3; e[n_, 0, m_] := 1;
%t e[n_, k_, m_] := 0 /; k >= n;
%t e[n_, k_, 1] := 1 /; k >= n;
%t e[n_, k_, m_] := (k + m - 1)e[n - 1, k, m] + (m*n - k + 1 - m)e[n - 1, k - 1, m];
%t Table[Table[e[n, k, m], {k, 0, n - 1}], {n, 1, 10}];
%t Table[Table[e[n, k, m] + e[n, n - k, m], {k, 0, n}], {n, 0, 10}];
%t Flatten[%]
%Y Cf. A054091, A054090, A008517, A156141.
%K nonn,tabl,less,uned
%O 0,1
%A _Roger L. Bagula_, Feb 05 2009