%I #6 Mar 12 2015 11:05:33
%S 8,38528,2583554048,825787662368768,806875574817679474688,
%T 1884680130335630169428983808,8996956010653823687821026161328128,
%U 78730345253083926602212304047862498459648,1165875553018316795143687738745856008854981050368,27479800301221036852377324247444630678920385132167692288
%N A bisection of A000436.
%F a(n) = 2*(-144)^(2*n+1)*(zeta(-4*n-2, 1/6)-zeta(-4*n-2,2/3)), where zeta(a,z) is the generalized Riemann zeta function.
%p a := n -> 2*(-144)^(2*n+1)*(Zeta(0,-4*n-2, 1/6)-Zeta(0,-4*n-2, 2/3)):
%p seq(a(n), n=0..9); # _Peter Luschny_, Mar 11 2015
%K nonn
%O 0,1
%A _N. J. A. Sloane_, Nov 07 2009