login
A156170
G.f.: exp( Sum_{n>=1} [Sum_{k>=1} k^n*x^k]^n/n ), a power series in x with integer coefficients.
15
1, 1, 3, 10, 41, 219, 1602, 16635, 247171, 5242108, 157390565, 6663089873, 396778864166, 33200932308437, 3906922702271961, 646161881511137940, 150482521507292513413, 49318093291540113084965, 22790150225552744270503692, 14843990673285561887923674163, 13646527810852572644275538963207, 17710656073227095563348293151121448
OFFSET
0,3
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} [ Sum_{k=1..n} A008292(n,k) * x^k / (1-x)^(n+1) ]^n / n ), where A008292 are the Eulerian numbers. - Paul D. Hanna, Sep 13 2016
Conjecture: log(a(n)) ~ n^2 * log(2)/4. - Vaclav Kotesovec, Sep 02 2017
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 41*x^4 + 219*x^5 + 1602*x^6 +...
log(A(x)) = x + 5*x^2/2 + 22*x^3/3 + 117*x^4/4 + 821*x^5/5 + 7796*x^6/6 + 1810093*x^7/7 + 44561794*x^8/8 +...+ A276750(n)*x^n/n +...
The logarithm of g.f. A(x) equals the series:
log(A(x)) = Sum_{n>=1} (x + 2^n*x^2 + 3^n*x^3 +...+ k^n*x^k +...)^n/n,
or,
log(A(x)) = (x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 +...) +
(x + 2^2*x^2 + 3^2*x^3 + 4^2*x^4 + 5^2*x^5 +...)^2/2 +
(x + 2^3*x^2 + 3^3*x^3 + 4^3*x^4 + 5^3*x^5 +...)^3/3 +
(x + 2^4*x^2 + 3^4*x^3 + 4^4*x^4 + 5^4*x^5 +...)^4/4 + ...
This logarithmic series can be written using the Eulerian numbers like so:
log(A(x)) = x/(1-x)^2 + (x + x^2)^2/(1-x)^6/2 + (x + 4*x^2 + x^3)^3/(1-x)^12/3 + (x + 11*x^2 + 11*x^3 + x^4)^4/(1-x)^20/4 + (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)^5/(1-x)^30/5 + (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)^6/(1-x)^42/6 +...+ [ Sum_{k=1..n} A008292(n,k) * x^k ]^n / (1-x)^(n^2+n)/n +...
PROG
(PARI) {a(n) = polcoeff( exp( sum(m=1, n, sum(k=1, n, k^m*x^k +x*O(x^n))^m/m ) ), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}
{a(n) = my(A=1, Oxn=x*O(x^n)); A = exp( sum(m=1, n+1, sum(k=1, m, A008292(m, k)*x^k/(1-x +Oxn)^(m+1) )^m / m ) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2009
STATUS
approved