OFFSET
2,1
COMMENTS
Conjecturally, the fractional part 0.97056 27484 ... of this constant equals ( (1 + 2 * Sum_{n >= 1} (-1)^n*exp(-2*Pi*n^2))/(1 + 2 * Sum_{n >= 1} exp(-2*Pi*n^2)) )^4. The series are rapidly converging. For example, summing both series from n = 1 to n = 2 approximates the fractional part of the constant as ( (1 - 2*exp(-2*Pi) + 2*exp(-8*Pi))/(1 + 2*exp(-2*Pi) + 2*exp(-8*Pi)) )^4 = 0.97056 27484 77140 58562 026(89) ..., correct to 23 decimal places. - Peter Bala, Jun 05 2019
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..10000
M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22. Published in B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001, pp. 771-808, section 2.4. Example 4.
FORMULA
17+12*sqrt(2) = (3+2*sqrt(2))^2 = (1+sqrt(2))^4. - Klaus Brockhaus, Feb 14 2009. (corrected by Bruno Berselli, Feb 19 2013)
EXAMPLE
17 + 12*sqrt(2) = 33.97056274847714058562026469051637694283606250452337687...
MATHEMATICA
RealDigits[17 + 12 Sqrt[2], 10, 120][[1]] (* Harvey P. Dale, Nov 30 2014 *)
PROG
(PARI) 17+sqrt(288) \\ Charles R Greathouse IV, May 07 2015
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Klaus Brockhaus, Feb 09 2009
STATUS
approved