The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156162 a(n) = 34*a(n-1)-a(n-2)-2312 for n > 2; a(1)=625, a(2)=18769. 2

%I

%S 625,18769,635209,21576025,732947329,24898630849,845820499225,

%T 28732998340489,976076123075089,33157855186210225,1126391000208070249,

%U 38264136151888175929,1299854238163989909025,44156779961423768728609

%N a(n) = 34*a(n-1)-a(n-2)-2312 for n > 2; a(1)=625, a(2)=18769.

%C lim_{n -> infinity} a(n)/a(n-1) = (17+12*sqrt(2)).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).

%F a(n) = (578+(387-182*sqrt(2))*(17+12*sqrt(2))^n+(387+182*sqrt(2))*(17-12*sqrt(2))^n)/8.

%F G.f.: x*(625-3106*x+169*x^2)/((1-x)*(1-34*x+x^2)).

%e a(3) = 34*a(2)-a(1)-2312 = 34*18769-625-2312 = 635209.

%t RecurrenceTable[{a[1]==625,a[2]==18769,a[n]==34a[n-1]-a[n-2]-2312},a,{n,20}] (* or *) LinearRecurrence[{35,-35,1},{625,18769,635209},20] (* _Harvey P. Dale_, Sep 29 2016 *)

%o (PARI) {m=14; v=concat([625 ,18769], vector(m-2)); for(n=3, m, v[n]=34*v[n-1]-v[n-2]-2312); v}

%Y Third trisection of A156159.

%Y Cf. A156164 (decimal expansion of (17+12*sqrt(2))).

%K nonn

%O 1,1

%A _Klaus Brockhaus_, Feb 09 2009

%E G.f. corrected by _Klaus Brockhaus_, Sep 23 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 3 23:48 EDT 2020. Contains 333207 sequences. (Running on oeis4.)