OFFSET
0,2
COMMENTS
Number of Dyck n-paths with two types of up step and three types of down step. - David Scambler, Jun 21 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n) = 6^n * A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
6, 6, 0, 0, 0, 0, ...
6, 6, 6, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
6, 6, 6, 6, 6, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 24*x). - Peter Luschny, Aug 26 2012
G.f.: c(6*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum{k=0..n} A085880(n,k) * 5^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 6*x/(1 - 6*x/(1 - 6*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 588/529 + 864*arctan(1/sqrt(23)) / (529*sqrt(23)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 564/625 - 432*log(3/2) / 3125. - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +12*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022
MAPLE
A156128_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 6*(a[w-1]+add(a[j]*a[w-j-1], j=1..w-1)) od; convert(a, list)end: A156128_list(16); # Peter Luschny, May 19 2011
MATHEMATICA
Table[CatalanNumber[n]6^n, {n, 0, 16}] (* Alonso del Arte, Jul 19 2011 *)
PROG
(Magma) [6^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Feb 04 2009
STATUS
approved