login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156101 L.g.f.: A(x) = Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} (1 + 2^n*x)^n*x^n/n . 1
1, 5, 13, 65, 401, 3521, 43457, 738305, 17746177, 593695745, 27878501377, 1840450134017, 169904883945473, 22139372291866625, 4036405254299041793, 1038968242677362458625, 375102612647535161966593 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Compare to l.g.f. Sum_{m>=1} (1 + x)^m * x^m/m of the Fibonacci sequence.

LINKS

Table of n, a(n) for n=1..17.

FORMULA

L.g.f.: A(x) = log(G(x)) where G(x) is the g.f. of A156100.

a(n) = n*Sum_{k=0..floor(n/2)} C(n-k,k)*2^(k(n-k))/(n-k). - Paul D. Hanna, Apr 10 2009

EXAMPLE

G.f.: A(x) = x + 5*x^2/2 + 13*x^3/3 + 65*x^4/4 + 401*x^5/5 + ...

A(x) = (1 + 2*x)*x + (1 + 2^2*x)^2*x^2/2 + (1 + 2^3*x)^3*x^3/3 + ...

exp(A(x)) = 1 + x + 3*x^2 + 7*x^3 + 25*x^4 + 113*x^5 + 741*x^6 + ...

MATHEMATICA

Table[n*Sum[Binomial[n-k, k]*2^(k(n-k))/(n-k), {k, 0, Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 06 2014 *)

PROG

(PARI) {a(n)=n*polcoeff(sum(m=1, n+1, (1+2^m*x)^m*x^m/m)+x*O(x^n), n)}

(PARI) {a(n)=n*sum(k=0, n\2, binomial(n-k, k)*2^(k*(n-k))/(n-k))} \\ Paul D. Hanna, Apr 10 2009

CROSSREFS

Cf. A156100.

Sequence in context: A272069 A018678 A149575 * A093118 A087506 A068487

Adjacent sequences:  A156098 A156099 A156100 * A156102 A156103 A156104

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 04 2009

EXTENSIONS

Offset corrected by Vaclav Kotesovec, Mar 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 17:50 EST 2019. Contains 329960 sequences. (Running on oeis4.)