The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156096 Inverse binomial transform of A030186. 2
 1, 1, 4, 6, 18, 32, 84, 164, 400, 824, 1928, 4096, 9360, 20240, 45632, 99680, 223008, 489984, 1091392, 2405952, 5345536, 11806592, 26194048, 57917440, 128389376, 284057856, 629392384, 1393010176, 3085685248, 6830825472, 15128761344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A030186 = (1, 2, 7, 22, 71, 228, 733, 2356, 7573, 24342, ...). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,4,2). FORMULA a(n) = A007318^(-1) * A030186 From R. J. Mathar, Feb 10 2009: (Start) a(n) = 4*a(n-2) + 2*a(n-3). G.f.: (1+x)/(1-4*x^2-2*x^3). (End) EXAMPLE a(3) = 6 = (-1, 3, -3, 1) dot (1, 2, 7, 22) = (-1, 6, -21, 22) = 6. MAPLE seq(coeff(series((1+x)/(1-4*x^2-2*x^3), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 27 2019 MATHEMATICA LinearRecurrence[{0, 4, 2}, {1, 1, 4}, 40] (* Harvey P. Dale, Apr 05 2014 *) PROG (PARI) my(x='x+O('x^40)); Vec((1+x)/(1-4*x^2-2*x^3)) \\ G. C. Greubel, Oct 27 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)/(1-4*x^2-2*x^3) )); // G. C. Greubel, Oct 27 2019 (Sage) def A156096_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1+x)/(1-4*x^2-2*x^3)).list() A156096_list(40) # G. C. Greubel, Oct 27 2019 (GAP) a:=[1, 1, 4];; for n in [4..40] do a[n]:=4*a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Oct 27 2019 CROSSREFS Cf. A030186. Sequence in context: A287682 A209236 A182643 * A281861 A218898 A088810 Adjacent sequences:  A156093 A156094 A156095 * A156097 A156098 A156099 KEYWORD nonn AUTHOR Gary W. Adamson, Feb 03 2009 EXTENSIONS More terms from R. J. Mathar, Feb 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 02:38 EDT 2021. Contains 343072 sequences. (Running on oeis4.)