OFFSET
0,3
COMMENTS
FORMULA
Let F(n) be the Fibonacci number A000045(n).
a(n) = sum_{k=1..n} F(4k)^2.
Closed form: a(n) = F(8n+4)/135 - (2n + 1)/45.
Recurrence: a(n) - 48 a(n-1) + 48 a(n-2) - a(n-3) = 2.
Recurrence: a(n) - 49 a(n-1) + 96 a(n-2) - 49 a(n-3) + a(n-4) = 0.
G.f.: A(x) = (x + x^2)/(1 - 49 x + 96 x^2 - 49 x^3 + x^4) = x (1 + x)/((1 - x)^2 (1 - 47 x + x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (1/9) Fibonacci[4k]^2, {k, 1, n} ], -Sum[ (1/9) Fibonacci[-4k]^2, {k, 1, -n - 1} ] ]
Accumulate[Fibonacci[4Range[0, 20]]^2]/9 (* Harvey P. Dale, Sep 22 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stuart Clary, Feb 04 2009
STATUS
approved