The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156040 Number of compositions (ordered partitions) of n into 3 parts (some of which may be zero), where the first is at least as great as each of the others. 19
 1, 1, 3, 4, 6, 8, 11, 13, 17, 20, 24, 28, 33, 37, 43, 48, 54, 60, 67, 73, 81, 88, 96, 104, 113, 121, 131, 140, 150, 160, 171, 181, 193, 204, 216, 228, 241, 253, 267, 280, 294, 308, 323, 337, 353, 368, 384, 400, 417, 433, 451, 468, 486, 504, 523, 541, 561, 580, 600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n = 1, 2 these are just the triangular numbers. a(n) is always at least 1/3 of the corresponding triangular number, since each partition of this type gives up to three ordered partitions with the same cyclical order. An alternative definition, which avoids using parts of size 0: a(n) is the third diagonal of A184957. - N. J. A. Sloane, Feb 27 2011 Diagonal sums of the triangle formed by rows T(2, k) k = 0, 1, ..., 2m of ascending m-nomial triangles (see A004737): 1 1 2 1 1 2 3 2 1 1 2 3 4 3 2 1 1 2 3 4 5 4 3 2 1 1 2 3 4 5 6 5 4 3 2 1 - Bob Selcoe, Feb 07 2014 Arrange A004396 in rows successively shifted to the right two spaces and sum the columns: 1 1 2 3 3 4 5 5 6 ... 1 1 2 3 3 4 5 ... 1 1 2 3 3 ... 1 1 2 ... 1 ... ------------------------------ 1 1 3 4 6 8 11 13 17 ... - L. Edson Jeffery, Jul 30 2014 a(n) is the dimension of three-dimensional (2n + 2)-homogeneous polynomial vector fields with full tetrahedral symmetry (for a given orthogonal representation), and which are solenoidal. - Giedrius Alkauskas, Sep 30 2017 Also the number of compositions of n + 3 into three parts, the first at least as great as each of the other two. Also the number of compositions of n + 4 into three parts, the first strictly greater than each of the other two. - Gus Wiseman, Oct 09 2020 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Giedrius Alkauskas, Projective and polynomial superflows. I, arxiv.org/1601.06570 [math.AG] (2017), Section 4.3. Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1). FORMULA G.f.: (x^2+1) / (1-x-x^2+x^4+x^5-x^6). - Alois P. Heinz, Jun 14 2009 Slightly nicer g.f.: (1+x^2)/((1-x)*(1-x^2)*(1-x^3)). - N. J. A. Sloane, Apr 29 2011 a(n) = A007590(n+2) - A000212(n+2). - Richard R. Forberg, Dec 08 2013 a(2*n) = A071619(n+1). - L. Edson Jeffery, Jul 29 2014 a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6), with a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 4, a(4) = 6, a(5) = 8. - Harvey P. Dale, May 28 2015 a(n) = (n^2 + 4*n + 3)/6 + IF(MOD(n, 2) = 0, 1/2) + IF(MOD(n, 3) = 1, -1/3). - Heinrich Ludwig, Mar 21 2017 a(n) = 1 + floor((n^2 + 4*n)/6). - Giovanni Resta, Mar 21 2017 Euler transform of length 4 sequence [1, 2, 1, -1]. - Michael Somos, Mar 26 2017 a(n) = a(-4 - n) for all n in Z. - Michael Somos, Mar 26 2017 0 = a(n)*(-1 + a(n) - 2*a(n+1) - 2*a(n+2) + 2*a(n+3)) + a(n+1)*(+1 + a(n+1) + 2*a(n+2) - 2*a(n+3)) + a(n+2)*(+1 + a(n+2) - 2*a(n+3)) + a(n+3)*(-1 + a(n+3)) for all n in Z. - Michael Somos, Mar 26 2017 a(n) = round((n+1)*(n+3)/6). - Bill McEachen, Feb 16 2021 EXAMPLE G.f. = 1 + x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + 13*x^7 + 17*x^8 + 20*x^9 + ... The a(4) = 6 compositions of 4 are: (4 0 0), (3 1 0), (3 0 1), (2 2 0), (2 1 1), (2 0 2). From Gus Wiseman, Oct 05 2020: (Start) The a(0) = 1 through a(7) = 13 triples of nonnegative integers summing to n where the first is at least as great as each of the other two are: (000) (100) (101) (111) (202) (212) (222) (313) (110) (201) (211) (221) (303) (322) (200) (210) (220) (302) (312) (331) (300) (301) (311) (321) (403) (310) (320) (330) (412) (400) (401) (402) (421) (410) (411) (430) (500) (420) (502) (501) (511) (510) (520) (600) (601) (610) (700) (End) MAPLE a:= proc(n) local m, r; m := iquo(n, 6, 'r'); (4 +6*m +2*r) *m + [1, 1, 3, 4, 6, 8][r+1] end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 14 2009 MATHEMATICA nn = 58; CoefficientList[Series[x^3/(1 - x^2)^2/(1 - x^3) + 1/(1 - x^2)^2/(1 - x), {x, 0, nn}], x] (* Geoffrey Critzer, Jul 14 2013 *) CoefficientList[Series[(1 + x^2)/((1 + x) * (1 + x + x^2) * (1 - x)^3), {x, 0, 58}], x] (* L. Edson Jeffery, Jul 29 2014 *) LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 1, 3, 4, 6, 8}, 60] (* Harvey P. Dale, May 28 2015 *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+3, {3}], #[[1]]>=#[[2]]&&#[[1]]>=#[[3]]&]], {n, 0, 15}] (* Gus Wiseman, Oct 05 2020*) PROG (PARI) {a(n) = n*(n+4)\6 + 1}; /* Michael Somos, Mar 26 2017 */ CROSSREFS For compositions into 4 summands see A156039; also see A156041 and A156042. Cf. A184957, A071619 (bisection). A001399(n-2)*2 is the strict case. A001840(n-2) is the version with opposite relations. A001840(n-1) is the version with strict opposite relations. A069905 is the case with strict relations. A014311 ranks 3-part compositions, with strict case A337453. A014612 ranks 3-part partitions, with strict case A007304. Cf. A000217, A001523, A211540, A218004, A220377, A337483, A337484. Sequence in context: A030761 A060903 A079401 * A325172 A242254 A107770 Adjacent sequences: A156037 A156038 A156039 * A156041 A156042 A156043 KEYWORD nonn,easy AUTHOR Jack W Grahl, Feb 02 2009, Feb 11 2009 EXTENSIONS More terms from Alois P. Heinz, Jun 14 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 21:09 EST 2022. Contains 358484 sequences. (Running on oeis4.)