The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156002 Partial sums of round(7^n/9). 1
 0, 1, 6, 44, 311, 2178, 15250, 106755, 747288, 5231022, 36617161, 256320132, 1794240932, 12559686533, 87917805738, 615424640176, 4307972481243, 30155807368710, 211090651580982, 1477634561066887, 10343441927468220 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 Index entries for linear recurrences with constant coefficients, signature (8,-7,1,-8,7). Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. FORMULA a(n) = round((7*7^n - 6*n + 2)/54) = round((7*7^n - 6*n - 7)/54). a(n) = floor((7*7^n - 6*n + 11)/54). a(n) = ceiling((7*7^n - 6*n - 7)/54). a(n) = a(n-3) + (19*7^(n-2) - 1)/3, n > 2. a(n) = 8*a(n-1) - 7*a(n-2) + a(n-3) - 8*a(n-4) + 7*a(n-5), n > 4. G.f.: -x*(1 - 2*x + 3*x^2)/((7*x-1)*(1+x+x^2)*(x-1)^2). EXAMPLE a(3) = 0 + 1 + 5 + 38 = 44. MAPLE A156002 := proc(n) add( round(7^i/9), i=0..n) ; end proc: MATHEMATICA CoefficientList[Series[-x*(1 - 2*x + 3*x^2)/((7*x - 1)*(1 + x + x^2)*(x - 1)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{8, -7, 1, -8, 7}, {0, 1, 6, 44, 311}, 40] (* Stefano Spezia, Sep 02 2018 *) PROG (MAGMA) [Floor((7*7^n-6*n+11)/54): n in [0..40]]; // Vincenzo Librandi, Apr 27 2011 CROSSREFS Cf. A178826. Sequence in context: A309418 A203601 A091162 * A091163 A189800 A227665 Adjacent sequences:  A155999 A156000 A156001 * A156003 A156004 A156005 KEYWORD nonn,less AUTHOR Mircea Merca, Dec 28 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 19:04 EDT 2020. Contains 337388 sequences. (Running on oeis4.)