login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155997 Triangle read by rows: T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 + (-1)^k)/2. 1
2, 1, 1, 2, 0, 2, 1, 3, 3, 1, 2, 0, 12, 0, 2, 1, 5, 10, 10, 5, 1, 2, 0, 30, 0, 30, 0, 2, 1, 7, 21, 35, 35, 21, 7, 1, 2, 0, 56, 0, 140, 0, 56, 0, 2, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 2, 0, 90, 0, 420, 0, 420, 0, 90, 0, 2, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Row sums are: {2, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,...}

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = binomial(n, k)*(1 + (-1)^k)/2.

From G. C. Greubel, Dec 01 2019: (Start)

T(n, k) = binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2.

Sum_{k=0..n} T(n,k) = 2^n for n >= 1.

Sum_{k=0..n-1} T(n,k) = (2^(n+1) - 3 - (-1)^n)/2 = A140253(n), n >= 2. (End)

EXAMPLE

Triangle begins as:

  2;

  1, 1;

  2, 0,  2;

  1, 3,  3,  1;

  2, 0, 12,  0,   2;

  1, 5, 10, 10,   5,   1;

  2, 0, 30,  0,  30,   0,   2;

  1, 7, 21, 35,  35,  21,   7,  1;

  2, 0, 56,  0, 140,   0,  56,  0,  2;

  1, 9, 36, 84, 126, 126,  84, 36,  9, 1;

  2, 0, 90,  0, 420,   0, 420,  0, 90, 0, 2;

MAPLE

seq(seq( binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2, k=0..n), n=0..12); # G. C. Greubel, Dec 01 2019

MATHEMATICA

f[n_, k_]:= (Binomial[n, k] + (-1)^k*Binomial[n, k])/2; Table[f[n, k]+f[n, n-k], {n, 0, 10}, {k, 0, n}]//Flatten

Table[Binomial[n, k]*(2+(-1)^k*(1+(-1)^n))/2, {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 01 2019 *)

PROG

(PARI) T(n, k) = binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2; \\ G. C. Greubel, Dec 01 2019

(MAGMA) [Binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2: k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 01 2019

(Sage) [[binomial(n, k)*(2+(-1)^k*(1+(-1)^n))/2 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Dec 01 2019

(GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, k)*(2 + (-1)^k*(1 + (-1)^n))/2 ))); # G. C. Greubel, Dec 01 2019

CROSSREFS

Sequence in context: A194529 A055138 A177717 * A326171 A123223 A088226

Adjacent sequences:  A155994 A155995 A155996 * A155998 A155999 A156000

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula, Feb 01 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 07:15 EST 2021. Contains 340214 sequences. (Running on oeis4.)