This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155994 A triangle of polynomial coefficients: p(x,n)=-(ChebyshevU[n, x] - ((x + 1)^n - (1 - x)^n)); sp(x,n) = p(x, n) + x^n*p(1/x, n). 0

%I

%S -2,-3,8,-3,-6,10,10,-6,-17,16,24,16,-17,-30,4,52,52,4,-30,-63,24,56,

%T 80,56,24,-63,-126,22,234,-10,-10,234,22,-126,-257,32,488,224,-480,

%U 224,488,32,-257,-510,8,1096,328,-420,-420,328,1096,8,-510,-1023,40,2244,480

%N A triangle of polynomial coefficients: p(x,n)=-(ChebyshevU[n, x] - ((x + 1)^n - (1 - x)^n)); sp(x,n) = p(x, n) + x^n*p(1/x, n).

%C Row sums are:

%C {-2, 0, 2, 8, 22, 52, 114, 240, 494, 1004, 2026,...}.

%F p(x,n)=-(ChebyshevU[n, x] - ((x + 1)^n - (1 - x)^n));

%F sp(x,n) = p(x, n) + x^n*p(1/x, n).

%e {-2},

%e {},

%e {-3, 8, -3},

%e {-6, 10, 10, -6},

%e {-17, 16, 24, 16, -17},

%e {-30, 4, 52, 52, 4, -30},

%e {-63, 24, 56, 80, 56, 24, -63},

%e {-126, 22, 234, -10, -10, 234, 22, -126},

%e {-257, 32, 488, 224, -480, 224, 488, 32, -257},

%e {-510, 8, 1096, 328, -420, -420, 328, 1096, 8, -510},

%e {-1023, 40, 2244, 480, -1232, 1008, -1232, 480, 2244, 40, -1023}

%t p[x_, n_] =-(ChebyshevU[n, x] - ((x + 1)^n - (1 - x)^n));

%t sp[x_, n_] = p[x, n] + x^n*p[1/x, n];

%t Table[FullSimplify[ExpandAll[sp[x, n]]], {n, 0, 10}];

%t Table[CoefficientList[FullSimplify[ExpandAll[sp[x, n]]], x], {n, 0, 10}]; Q Flatten[%]

%K sign,tabl,uned

%O 0,1

%A _Roger L. Bagula_, Feb 01 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 12:47 EDT 2019. Contains 328318 sequences. (Running on oeis4.)