OFFSET
0,3
COMMENTS
Row sums are:
{2, 4, 16, 96, 768, 7680, 92160, 1290240, 20643840, 371589120, 7431782400,...}.
FORMULA
q(x,n)=(1 - x)^(n + 1)*Sum[(2*k + n)^n*x^k, {k, 0, Infinity}];
p(x,n)=q(x,n)+x^n*q(1/x,n);
t(n,m)=coefficients(p(x,n))
EXAMPLE
{1, 1},
{2, 2},
{8, 8},
{26, 22, 22, 26},
{272, -64, 352, -64, 272},
{2882, -486, 1444, 1444, -486, 2882}, {50752, -93056, 230336, -283904, 230336, -93056, 50752},
{745418, -1182562, 2112618, -1030354, -1030354, 2112618, -1182562, 745418},
{18456832, -66045952, 193838080, -342063104, 412272128, -342063104, 193838080, -66045952, 18456832},
{347066882, -1114674254, 2662543720, -3229707896, 1520566108, 1520566108, -3229707896, 2662543720, -1114674254, 347066882},
{11073741824, -59833329664, 216555369472, -500687839232, 812895791104, -952575684608, 812895791104, -500687839232, 216555369472, -59833329664, 11073741824}
MATHEMATICA
Clear[p, x, n, m];
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + n)^n*x^k, {k, 0, Infinity}];
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]
+ Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}];
Flatten[%]
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Jan 31 2009
STATUS
approved