OFFSET
1,1
COMMENTS
For n^2 + (n+1)^3 to be a prime, n cannot be 1 modulo 3 whereas all a(n) are definitely 1 modulo 3. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Feb 13 2009
LINKS
Zak Seidov, Table of n, a(n) for n = 1..2000
FORMULA
a(n) = m^2 + (m+1)^3 where m = A128958(n). - Zak Seidov, Dec 15 2013
EXAMPLE
31 is in the sequence since 31 is prime and 31 = 2^2 + 3^3.
MATHEMATICA
lst={}; Do[p=(n+2)^2+(n+3)^3; If[PrimeQ[p], AppendTo[lst, p]], {n, 0, 2*5!}]; lst...and/or...lst={}; Do[p=n^2+(n+1)^3; If[PrimeQ[p], AppendTo[lst, p]], {n, 0, 2*5!}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jan 30 2009
EXTENSIONS
Definition corrected by Zak Seidov, Jul 05 2013
STATUS
approved