login
A155899
Square matrix T(m,n)=1 if (2m+1)^(2n-1)-2 is prime, 0 otherwise; read by antidiagonals.
2
0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,1
COMMENTS
In some sense the "minimal" possible generalization of the pattern of Mersenne primes (cf. A000043) is to consider powers of odd numbers minus 2. Here only odd powers are considered.
PROG
(PARI) T = matrix( 19, 19, m, n, isprime((2*m+1)^(2*n-1)-2)) ;
A155899 = concat( vector( vecmin( matsize(T)), i, vector( i, j, T[j, i-j+1])))
KEYWORD
easy,nonn,tabl
AUTHOR
M. F. Hasler, Feb 01 2009
STATUS
approved