The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155899 Square matrix T(m,n)=1 if (2m+1)^(2n-1)-2 is prime, 0 otherwise; read by antidiagonals. 2
 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In some sense the "minimal" possible generalization of the pattern of Mersenne primes (cf. A000043) is to consider powers of odd numbers minus 2. Here only odd powers are considered. LINKS PROG (PARI) T = matrix( 19, 19, m, n, isprime((2*m+1)^(2*n-1)-2)) ; A155899 = concat( vector( vecmin( matsize(T)), i, vector( i, j, T[j, i-j+1]))) CROSSREFS Cf. A084714, A128472, A014224, A109080, A090669, A128455, A128457, A128458, A128459, A128460, A128461. Sequence in context: A269723 A284487 A156660 * A284932 A117814 A257000 Adjacent sequences:  A155896 A155897 A155898 * A155900 A155901 A155902 KEYWORD easy,nonn,tabl AUTHOR M. F. Hasler, Feb 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 20:22 EDT 2020. Contains 337432 sequences. (Running on oeis4.)