The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155879 a(0) = 4; for n > 0, a(n) is the smallest composite number c > a(n-1) such that c - n is also composite. 1
 4, 9, 10, 12, 14, 15, 16, 21, 22, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36, 39, 40, 42, 44, 45, 46, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 105, 106, 108 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE a(0) = 4. Subtracting n = 0 from a(0) gives 4-0 = 4, which is a composite number; subtracting n = 1 from a(1) gives 9-1 = 8, which is a composite number; subtracting n = 2 from a(2) gives 12-2 = 10, which is a composite number; subtracting n = 3 from a(3) gives 15-3 = 12, which is a composite number; etc. MAPLE isA002808 := proc(n) option remember; RETURN(n>= 4 and not isprime(n)) ; end: A155879:= proc(n) option remember; local a; if n = 0 then 4; else for a from procname(n-1)+1 do if isA002808(a) and isA002808(a-n) then RETURN(a) ; fi; od: fi; end: seq(A155879(n), n=0..100) ; # R. J. Mathar, Jan 31 2009 PROG (Python) from sympy import isprime def composite(n): return n >= 4 and not isprime(n) def aupton(nn):   alst =    for n in range(1, nn+1):     an = max(alst[-1] + 1, n + 4)     while not (composite(an) and composite(an-n)): an += 1     alst.append(an)   return alst print(aupton(68)) # Michael S. Branicky, Apr 09 2021 CROSSREFS Cf. A155875. Sequence in context: A175308 A244533 A180149 * A172192 A243194 A342393 Adjacent sequences:  A155876 A155877 A155878 * A155880 A155881 A155882 KEYWORD base,easy,nonn,changed AUTHOR Eric Angelini, Jan 29 2009 EXTENSIONS Corrected from a(2) on by R. J. Mathar, Jan 31 2009 Name edited by Jon E. Schoenfield, Jan 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 17:36 EDT 2021. Contains 343156 sequences. (Running on oeis4.)